|
1 /* |
|
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. |
|
3 * |
|
4 * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved. |
|
5 * |
|
6 * Redistribution and use in source and binary forms, with or without |
|
7 * modification, are permitted provided that the following conditions are met: |
|
8 * |
|
9 * 1. Redistributions of source code must retain the above copyright |
|
10 * notice, this list of conditions and the following disclaimer. |
|
11 * |
|
12 * 2. Redistributions in binary form must reproduce the above copyright |
|
13 * notice, this list of conditions and the following disclaimer in the |
|
14 * documentation and/or other materials provided with the distribution. |
|
15 * |
|
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
|
20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
26 * POSSIBILITY OF SUCH DAMAGE. |
|
27 */ |
|
28 |
|
29 #include "cx/array_list.h" |
|
30 #include <assert.h> |
|
31 #include <string.h> |
|
32 |
|
33 // LOW LEVEL ARRAY LIST FUNCTIONS |
|
34 |
|
35 enum cx_array_copy_result cx_array_copy( |
|
36 void **target, |
|
37 size_t *size, |
|
38 size_t *capacity, |
|
39 size_t index, |
|
40 void const *src, |
|
41 size_t elem_size, |
|
42 size_t elem_count, |
|
43 struct cx_array_reallocator_s *reallocator |
|
44 ) { |
|
45 // assert pointers |
|
46 assert(target != NULL); |
|
47 assert(size != NULL); |
|
48 assert(src != NULL); |
|
49 |
|
50 // determine capacity |
|
51 size_t cap = capacity == NULL ? *size : *capacity; |
|
52 |
|
53 // check if resize is required |
|
54 size_t minsize = index + elem_count; |
|
55 size_t newsize = *size < minsize ? minsize : *size; |
|
56 bool needrealloc = newsize > cap; |
|
57 |
|
58 // reallocate if possible |
|
59 if (needrealloc) { |
|
60 // a reallocator and a capacity variable must be available |
|
61 if (reallocator == NULL || capacity == NULL) { |
|
62 return CX_ARRAY_COPY_REALLOC_NOT_SUPPORTED; |
|
63 } |
|
64 |
|
65 // check, if we need to repair the src pointer |
|
66 uintptr_t targetaddr = (uintptr_t) *target; |
|
67 uintptr_t srcaddr = (uintptr_t) src; |
|
68 bool repairsrc = targetaddr <= srcaddr |
|
69 && srcaddr < targetaddr + cap * elem_size; |
|
70 |
|
71 // calculate new capacity (next number divisible by 16) |
|
72 cap = newsize - (newsize % 16) + 16; |
|
73 assert(cap > newsize); |
|
74 |
|
75 // perform reallocation |
|
76 void *newmem = reallocator->realloc( |
|
77 *target, cap, elem_size, reallocator |
|
78 ); |
|
79 if (newmem == NULL) { |
|
80 return CX_ARRAY_COPY_REALLOC_FAILED; |
|
81 } |
|
82 |
|
83 // repair src pointer, if necessary |
|
84 if (repairsrc) { |
|
85 src = ((char *) newmem) + (srcaddr - targetaddr); |
|
86 } |
|
87 |
|
88 // store new pointer and capacity |
|
89 *target = newmem; |
|
90 *capacity = cap; |
|
91 } |
|
92 |
|
93 // determine target pointer |
|
94 char *start = *target; |
|
95 start += index * elem_size; |
|
96 |
|
97 // copy elements and set new size |
|
98 memmove(start, src, elem_count * elem_size); |
|
99 *size = newsize; |
|
100 |
|
101 // return successfully |
|
102 return CX_ARRAY_COPY_SUCCESS; |
|
103 } |
|
104 |
|
105 #ifndef CX_ARRAY_SWAP_SBO_SIZE |
|
106 #define CX_ARRAY_SWAP_SBO_SIZE 512 |
|
107 #endif |
|
108 |
|
109 void cx_array_swap( |
|
110 void *arr, |
|
111 size_t elem_size, |
|
112 size_t idx1, |
|
113 size_t idx2 |
|
114 ) { |
|
115 assert(arr != NULL); |
|
116 |
|
117 // short circuit |
|
118 if (idx1 == idx2) return; |
|
119 |
|
120 char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE]; |
|
121 void *tmp; |
|
122 |
|
123 // decide if we can use the local buffer |
|
124 if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) { |
|
125 tmp = malloc(elem_size); |
|
126 // we don't want to enforce error handling |
|
127 if (tmp == NULL) abort(); |
|
128 } else { |
|
129 tmp = sbo_mem; |
|
130 } |
|
131 |
|
132 // calculate memory locations |
|
133 char *left = arr, *right = arr; |
|
134 left += idx1 * elem_size; |
|
135 right += idx2 * elem_size; |
|
136 |
|
137 // three-way swap |
|
138 memcpy(tmp, left, elem_size); |
|
139 memcpy(left, right, elem_size); |
|
140 memcpy(right, tmp, elem_size); |
|
141 |
|
142 // free dynamic memory, if it was needed |
|
143 if (tmp != sbo_mem) { |
|
144 free(tmp); |
|
145 } |
|
146 } |
|
147 |
|
148 // HIGH LEVEL ARRAY LIST FUNCTIONS |
|
149 |
|
150 typedef struct { |
|
151 struct cx_list_s base; |
|
152 void *data; |
|
153 size_t capacity; |
|
154 struct cx_array_reallocator_s reallocator; |
|
155 } cx_array_list; |
|
156 |
|
157 static void *cx_arl_realloc( |
|
158 void *array, |
|
159 size_t capacity, |
|
160 size_t elem_size, |
|
161 struct cx_array_reallocator_s *alloc |
|
162 ) { |
|
163 // retrieve the pointer to the list allocator |
|
164 CxAllocator const *al = alloc->ptr1; |
|
165 |
|
166 // use the list allocator to reallocate the memory |
|
167 return cxRealloc(al, array, capacity * elem_size); |
|
168 } |
|
169 |
|
170 static void cx_arl_destructor(struct cx_list_s *list) { |
|
171 cx_array_list *arl = (cx_array_list *) list; |
|
172 |
|
173 char *ptr = arl->data; |
|
174 |
|
175 if (list->simple_destructor) { |
|
176 for (size_t i = 0; i < list->size; i++) { |
|
177 cx_invoke_simple_destructor(list, ptr); |
|
178 ptr += list->item_size; |
|
179 } |
|
180 } |
|
181 if (list->advanced_destructor) { |
|
182 for (size_t i = 0; i < list->size; i++) { |
|
183 cx_invoke_advanced_destructor(list, ptr); |
|
184 ptr += list->item_size; |
|
185 } |
|
186 } |
|
187 |
|
188 cxFree(list->allocator, arl->data); |
|
189 cxFree(list->allocator, list); |
|
190 } |
|
191 |
|
192 static size_t cx_arl_insert_array( |
|
193 struct cx_list_s *list, |
|
194 size_t index, |
|
195 void const *array, |
|
196 size_t n |
|
197 ) { |
|
198 // out of bounds and special case check |
|
199 if (index > list->size || n == 0) return 0; |
|
200 |
|
201 // get a correctly typed pointer to the list |
|
202 cx_array_list *arl = (cx_array_list *) list; |
|
203 |
|
204 // do we need to move some elements? |
|
205 if (index < list->size) { |
|
206 char const *first_to_move = (char const *) arl->data; |
|
207 first_to_move += index * list->item_size; |
|
208 size_t elems_to_move = list->size - index; |
|
209 size_t start_of_moved = index + n; |
|
210 |
|
211 if (CX_ARRAY_COPY_SUCCESS != cx_array_copy( |
|
212 &arl->data, |
|
213 &list->size, |
|
214 &arl->capacity, |
|
215 start_of_moved, |
|
216 first_to_move, |
|
217 list->item_size, |
|
218 elems_to_move, |
|
219 &arl->reallocator |
|
220 )) { |
|
221 // if moving existing elems is unsuccessful, abort |
|
222 return 0; |
|
223 } |
|
224 } |
|
225 |
|
226 // note that if we had to move the elements, the following operation |
|
227 // is guaranteed to succeed, because we have the memory already allocated |
|
228 // therefore, it is impossible to leave this function with an invalid array |
|
229 |
|
230 // place the new elements |
|
231 if (CX_ARRAY_COPY_SUCCESS == cx_array_copy( |
|
232 &arl->data, |
|
233 &list->size, |
|
234 &arl->capacity, |
|
235 index, |
|
236 array, |
|
237 list->item_size, |
|
238 n, |
|
239 &arl->reallocator |
|
240 )) { |
|
241 return n; |
|
242 } else { |
|
243 // array list implementation is "all or nothing" |
|
244 return 0; |
|
245 } |
|
246 } |
|
247 |
|
248 static int cx_arl_insert_element( |
|
249 struct cx_list_s *list, |
|
250 size_t index, |
|
251 void const *element |
|
252 ) { |
|
253 return 1 != cx_arl_insert_array(list, index, element, 1); |
|
254 } |
|
255 |
|
256 static int cx_arl_insert_iter( |
|
257 struct cx_mut_iterator_s *iter, |
|
258 void const *elem, |
|
259 int prepend |
|
260 ) { |
|
261 struct cx_list_s *list = iter->src_handle; |
|
262 if (iter->index < list->size) { |
|
263 int result = cx_arl_insert_element( |
|
264 list, |
|
265 iter->index + 1 - prepend, |
|
266 elem |
|
267 ); |
|
268 if (result == 0 && prepend != 0) { |
|
269 iter->index++; |
|
270 iter->elem_handle = ((char *) iter->elem_handle) + list->item_size; |
|
271 } |
|
272 return result; |
|
273 } else { |
|
274 int result = cx_arl_insert_element(list, list->size, elem); |
|
275 iter->index = list->size; |
|
276 return result; |
|
277 } |
|
278 } |
|
279 |
|
280 static int cx_arl_remove( |
|
281 struct cx_list_s *list, |
|
282 size_t index |
|
283 ) { |
|
284 cx_array_list *arl = (cx_array_list *) list; |
|
285 |
|
286 // out-of-bounds check |
|
287 if (index >= list->size) { |
|
288 return 1; |
|
289 } |
|
290 |
|
291 // content destruction |
|
292 cx_invoke_destructor(list, ((char *) arl->data) + index * list->item_size); |
|
293 |
|
294 // short-circuit removal of last element |
|
295 if (index == list->size - 1) { |
|
296 list->size--; |
|
297 return 0; |
|
298 } |
|
299 |
|
300 // just move the elements starting at index to the left |
|
301 int result = cx_array_copy( |
|
302 &arl->data, |
|
303 &list->size, |
|
304 &arl->capacity, |
|
305 index, |
|
306 ((char *) arl->data) + (index + 1) * list->item_size, |
|
307 list->item_size, |
|
308 list->size - index - 1, |
|
309 &arl->reallocator |
|
310 ); |
|
311 if (result == 0) { |
|
312 // decrease the size |
|
313 list->size--; |
|
314 } |
|
315 return result; |
|
316 } |
|
317 |
|
318 static void cx_arl_clear(struct cx_list_s *list) { |
|
319 if (list->size == 0) return; |
|
320 |
|
321 cx_array_list *arl = (cx_array_list *) list; |
|
322 char *ptr = arl->data; |
|
323 |
|
324 if (list->simple_destructor) { |
|
325 for (size_t i = 0; i < list->size; i++) { |
|
326 cx_invoke_simple_destructor(list, ptr); |
|
327 ptr += list->item_size; |
|
328 } |
|
329 } |
|
330 if (list->advanced_destructor) { |
|
331 for (size_t i = 0; i < list->size; i++) { |
|
332 cx_invoke_advanced_destructor(list, ptr); |
|
333 ptr += list->item_size; |
|
334 } |
|
335 } |
|
336 |
|
337 memset(arl->data, 0, list->size * list->item_size); |
|
338 list->size = 0; |
|
339 } |
|
340 |
|
341 static int cx_arl_swap( |
|
342 struct cx_list_s *list, |
|
343 size_t i, |
|
344 size_t j |
|
345 ) { |
|
346 if (i >= list->size || j >= list->size) return 1; |
|
347 cx_array_list *arl = (cx_array_list *) list; |
|
348 cx_array_swap(arl->data, list->item_size, i, j); |
|
349 return 0; |
|
350 } |
|
351 |
|
352 static void *cx_arl_at( |
|
353 struct cx_list_s const *list, |
|
354 size_t index |
|
355 ) { |
|
356 if (index < list->size) { |
|
357 cx_array_list const *arl = (cx_array_list const *) list; |
|
358 char *space = arl->data; |
|
359 return space + index * list->item_size; |
|
360 } else { |
|
361 return NULL; |
|
362 } |
|
363 } |
|
364 |
|
365 static ssize_t cx_arl_find( |
|
366 struct cx_list_s const *list, |
|
367 void const *elem |
|
368 ) { |
|
369 assert(list->cmpfunc != NULL); |
|
370 assert(list->size < SIZE_MAX / 2); |
|
371 char *cur = ((cx_array_list const *) list)->data; |
|
372 |
|
373 for (ssize_t i = 0; i < (ssize_t) list->size; i++) { |
|
374 if (0 == list->cmpfunc(elem, cur)) { |
|
375 return i; |
|
376 } |
|
377 cur += list->item_size; |
|
378 } |
|
379 |
|
380 return -1; |
|
381 } |
|
382 |
|
383 static void cx_arl_sort(struct cx_list_s *list) { |
|
384 assert(list->cmpfunc != NULL); |
|
385 qsort(((cx_array_list *) list)->data, |
|
386 list->size, |
|
387 list->item_size, |
|
388 list->cmpfunc |
|
389 ); |
|
390 } |
|
391 |
|
392 static int cx_arl_compare( |
|
393 struct cx_list_s const *list, |
|
394 struct cx_list_s const *other |
|
395 ) { |
|
396 assert(list->cmpfunc != NULL); |
|
397 if (list->size == other->size) { |
|
398 char const *left = ((cx_array_list const *) list)->data; |
|
399 char const *right = ((cx_array_list const *) other)->data; |
|
400 for (size_t i = 0; i < list->size; i++) { |
|
401 int d = list->cmpfunc(left, right); |
|
402 if (d != 0) { |
|
403 return d; |
|
404 } |
|
405 left += list->item_size; |
|
406 right += other->item_size; |
|
407 } |
|
408 return 0; |
|
409 } else { |
|
410 return list->size < other->size ? -1 : 1; |
|
411 } |
|
412 } |
|
413 |
|
414 static void cx_arl_reverse(struct cx_list_s *list) { |
|
415 if (list->size < 2) return; |
|
416 void *data = ((cx_array_list const *) list)->data; |
|
417 size_t half = list->size / 2; |
|
418 for (size_t i = 0; i < half; i++) { |
|
419 cx_array_swap(data, list->item_size, i, list->size - 1 - i); |
|
420 } |
|
421 } |
|
422 |
|
423 static bool cx_arl_iter_valid(void const *it) { |
|
424 struct cx_iterator_s const *iter = it; |
|
425 struct cx_list_s const *list = iter->src_handle; |
|
426 return iter->index < list->size; |
|
427 } |
|
428 |
|
429 static void *cx_arl_iter_current(void const *it) { |
|
430 struct cx_iterator_s const *iter = it; |
|
431 return iter->elem_handle; |
|
432 } |
|
433 |
|
434 static void cx_arl_iter_next(void *it) { |
|
435 struct cx_iterator_base_s *itbase = it; |
|
436 if (itbase->remove) { |
|
437 struct cx_mut_iterator_s *iter = it; |
|
438 itbase->remove = false; |
|
439 cx_arl_remove(iter->src_handle, iter->index); |
|
440 } else { |
|
441 struct cx_iterator_s *iter = it; |
|
442 iter->index++; |
|
443 iter->elem_handle = |
|
444 ((char *) iter->elem_handle) |
|
445 + ((struct cx_list_s const *) iter->src_handle)->item_size; |
|
446 } |
|
447 } |
|
448 |
|
449 static void cx_arl_iter_prev(void *it) { |
|
450 struct cx_iterator_base_s *itbase = it; |
|
451 struct cx_mut_iterator_s *iter = it; |
|
452 cx_array_list *const list = iter->src_handle; |
|
453 if (itbase->remove) { |
|
454 itbase->remove = false; |
|
455 cx_arl_remove(iter->src_handle, iter->index); |
|
456 } |
|
457 iter->index--; |
|
458 if (iter->index < list->base.size) { |
|
459 iter->elem_handle = ((char *) list->data) |
|
460 + iter->index * list->base.item_size; |
|
461 } |
|
462 } |
|
463 |
|
464 static bool cx_arl_iter_flag_rm(void *it) { |
|
465 struct cx_iterator_base_s *iter = it; |
|
466 if (iter->mutating) { |
|
467 iter->remove = true; |
|
468 return true; |
|
469 } else { |
|
470 return false; |
|
471 } |
|
472 } |
|
473 |
|
474 static struct cx_iterator_s cx_arl_iterator( |
|
475 struct cx_list_s const *list, |
|
476 size_t index, |
|
477 bool backwards |
|
478 ) { |
|
479 struct cx_iterator_s iter; |
|
480 |
|
481 iter.index = index; |
|
482 iter.src_handle = list; |
|
483 iter.elem_handle = cx_arl_at(list, index); |
|
484 iter.base.valid = cx_arl_iter_valid; |
|
485 iter.base.current = cx_arl_iter_current; |
|
486 iter.base.next = backwards ? cx_arl_iter_prev : cx_arl_iter_next; |
|
487 iter.base.flag_removal = cx_arl_iter_flag_rm; |
|
488 iter.base.remove = false; |
|
489 iter.base.mutating = false; |
|
490 |
|
491 return iter; |
|
492 } |
|
493 |
|
494 static cx_list_class cx_array_list_class = { |
|
495 cx_arl_destructor, |
|
496 cx_arl_insert_element, |
|
497 cx_arl_insert_array, |
|
498 cx_arl_insert_iter, |
|
499 cx_arl_remove, |
|
500 cx_arl_clear, |
|
501 cx_arl_swap, |
|
502 cx_arl_at, |
|
503 cx_arl_find, |
|
504 cx_arl_sort, |
|
505 cx_arl_compare, |
|
506 cx_arl_reverse, |
|
507 cx_arl_iterator, |
|
508 }; |
|
509 |
|
510 CxList *cxArrayListCreate( |
|
511 CxAllocator const *allocator, |
|
512 cx_compare_func comparator, |
|
513 size_t item_size, |
|
514 size_t initial_capacity |
|
515 ) { |
|
516 if (allocator == NULL) { |
|
517 allocator = cxDefaultAllocator; |
|
518 } |
|
519 |
|
520 cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list)); |
|
521 if (list == NULL) return NULL; |
|
522 |
|
523 list->base.cl = &cx_array_list_class; |
|
524 list->base.allocator = allocator; |
|
525 list->base.cmpfunc = comparator; |
|
526 list->capacity = initial_capacity; |
|
527 |
|
528 if (item_size > 0) { |
|
529 list->base.item_size = item_size; |
|
530 } else { |
|
531 item_size = sizeof(void *); |
|
532 cxListStorePointers((CxList *) list); |
|
533 } |
|
534 |
|
535 // allocate the array after the real item_size is known |
|
536 list->data = cxCalloc(allocator, initial_capacity, item_size); |
|
537 if (list->data == NULL) { |
|
538 cxFree(allocator, list); |
|
539 return NULL; |
|
540 } |
|
541 |
|
542 // configure the reallocator |
|
543 list->reallocator.realloc = cx_arl_realloc; |
|
544 list->reallocator.ptr1 = (void *) allocator; |
|
545 |
|
546 return (CxList *) list; |
|
547 } |