|
1 /* |
|
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. |
|
3 * |
|
4 * Copyright 2024 Mike Becker, Olaf Wintermann All rights reserved. |
|
5 * |
|
6 * Redistribution and use in source and binary forms, with or without |
|
7 * modification, are permitted provided that the following conditions are met: |
|
8 * |
|
9 * 1. Redistributions of source code must retain the above copyright |
|
10 * notice, this list of conditions and the following disclaimer. |
|
11 * |
|
12 * 2. Redistributions in binary form must reproduce the above copyright |
|
13 * notice, this list of conditions and the following disclaimer in the |
|
14 * documentation and/or other materials provided with the distribution. |
|
15 * |
|
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
|
20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
26 * POSSIBILITY OF SUCH DAMAGE. |
|
27 */ |
|
28 |
|
29 #include "cx/tree.h" |
|
30 |
|
31 #include "cx/array_list.h" |
|
32 |
|
33 #include <assert.h> |
|
34 |
|
35 #define CX_TREE_PTR(cur, off) (*(void**)(((char*)(cur))+(off))) |
|
36 #define tree_parent(node) CX_TREE_PTR(node, loc_parent) |
|
37 #define tree_children(node) CX_TREE_PTR(node, loc_children) |
|
38 #define tree_last_child(node) CX_TREE_PTR(node, loc_last_child) |
|
39 #define tree_prev(node) CX_TREE_PTR(node, loc_prev) |
|
40 #define tree_next(node) CX_TREE_PTR(node, loc_next) |
|
41 |
|
42 #define cx_tree_ptr_locations \ |
|
43 loc_parent, loc_children, loc_last_child, loc_prev, loc_next |
|
44 |
|
45 static void cx_tree_zero_pointers( |
|
46 void *node, |
|
47 ptrdiff_t loc_parent, |
|
48 ptrdiff_t loc_children, |
|
49 ptrdiff_t loc_last_child, |
|
50 ptrdiff_t loc_prev, |
|
51 ptrdiff_t loc_next |
|
52 ) { |
|
53 tree_parent(node) = NULL; |
|
54 tree_prev(node) = NULL; |
|
55 tree_next(node) = NULL; |
|
56 tree_children(node) = NULL; |
|
57 if (loc_last_child >= 0) { |
|
58 tree_last_child(node) = NULL; |
|
59 } |
|
60 } |
|
61 |
|
62 void cx_tree_link( |
|
63 void *restrict parent, |
|
64 void *restrict node, |
|
65 ptrdiff_t loc_parent, |
|
66 ptrdiff_t loc_children, |
|
67 ptrdiff_t loc_last_child, |
|
68 ptrdiff_t loc_prev, |
|
69 ptrdiff_t loc_next |
|
70 ) { |
|
71 void *current_parent = tree_parent(node); |
|
72 if (current_parent == parent) return; |
|
73 if (current_parent != NULL) { |
|
74 cx_tree_unlink(node, cx_tree_ptr_locations); |
|
75 } |
|
76 |
|
77 if (tree_children(parent) == NULL) { |
|
78 tree_children(parent) = node; |
|
79 if (loc_last_child >= 0) { |
|
80 tree_last_child(parent) = node; |
|
81 } |
|
82 } else { |
|
83 if (loc_last_child >= 0) { |
|
84 void *child = tree_last_child(parent); |
|
85 tree_prev(node) = child; |
|
86 tree_next(child) = node; |
|
87 tree_last_child(parent) = node; |
|
88 } else { |
|
89 void *child = tree_children(parent); |
|
90 void *next; |
|
91 while ((next = tree_next(child)) != NULL) { |
|
92 child = next; |
|
93 } |
|
94 tree_prev(node) = child; |
|
95 tree_next(child) = node; |
|
96 } |
|
97 } |
|
98 tree_parent(node) = parent; |
|
99 } |
|
100 |
|
101 void cx_tree_unlink( |
|
102 void *node, |
|
103 ptrdiff_t loc_parent, |
|
104 ptrdiff_t loc_children, |
|
105 ptrdiff_t loc_last_child, |
|
106 ptrdiff_t loc_prev, |
|
107 ptrdiff_t loc_next |
|
108 ) { |
|
109 if (tree_parent(node) == NULL) return; |
|
110 |
|
111 void *left = tree_prev(node); |
|
112 void *right = tree_next(node); |
|
113 void *parent = tree_parent(node); |
|
114 assert(left == NULL || tree_children(parent) != node); |
|
115 assert(right == NULL || loc_last_child < 0 || |
|
116 tree_last_child(parent) != node); |
|
117 |
|
118 if (left == NULL) { |
|
119 tree_children(parent) = right; |
|
120 } else { |
|
121 tree_next(left) = right; |
|
122 } |
|
123 if (right == NULL) { |
|
124 if (loc_last_child >= 0) { |
|
125 tree_last_child(parent) = left; |
|
126 } |
|
127 } else { |
|
128 tree_prev(right) = left; |
|
129 } |
|
130 |
|
131 tree_parent(node) = NULL; |
|
132 tree_prev(node) = NULL; |
|
133 tree_next(node) = NULL; |
|
134 } |
|
135 |
|
136 int cx_tree_search( |
|
137 const void *root, |
|
138 const void *node, |
|
139 cx_tree_search_func sfunc, |
|
140 void **result, |
|
141 ptrdiff_t loc_children, |
|
142 ptrdiff_t loc_next |
|
143 ) { |
|
144 int ret; |
|
145 *result = NULL; |
|
146 |
|
147 // shortcut: compare root before doing anything else |
|
148 ret = sfunc(root, node); |
|
149 if (ret < 0) { |
|
150 return ret; |
|
151 } else if (ret == 0 || tree_children(root) == NULL) { |
|
152 *result = (void*)root; |
|
153 return ret; |
|
154 } |
|
155 |
|
156 // create a working stack |
|
157 CX_ARRAY_DECLARE(const void *, work); |
|
158 cx_array_initialize(work, 32); |
|
159 |
|
160 // add the children of root to the working stack |
|
161 { |
|
162 void *c = tree_children(root); |
|
163 while (c != NULL) { |
|
164 cx_array_simple_add(work, c); |
|
165 c = tree_next(c); |
|
166 } |
|
167 } |
|
168 |
|
169 // remember a candidate for adding the data |
|
170 // also remember the exact return code from sfunc |
|
171 void *candidate = (void *) root; |
|
172 int ret_candidate = ret; |
|
173 |
|
174 // process the working stack |
|
175 while (work_size > 0) { |
|
176 // pop element |
|
177 const void *elem = work[--work_size]; |
|
178 |
|
179 // apply the search function |
|
180 ret = sfunc(elem, node); |
|
181 |
|
182 if (ret == 0) { |
|
183 // if found, exit the search |
|
184 *result = (void *) elem; |
|
185 work_size = 0; |
|
186 break; |
|
187 } else if (ret > 0) { |
|
188 // if children might contain the data, add them to the stack |
|
189 void *c = tree_children(elem); |
|
190 while (c != NULL) { |
|
191 cx_array_simple_add(work, c); |
|
192 c = tree_next(c); |
|
193 } |
|
194 |
|
195 // remember this node in case no child is suitable |
|
196 if (ret < ret_candidate) { |
|
197 candidate = (void *) elem; |
|
198 ret_candidate = ret; |
|
199 } |
|
200 } |
|
201 } |
|
202 |
|
203 // not found, but was there a candidate? |
|
204 if (ret != 0 && candidate != NULL) { |
|
205 ret = ret_candidate; |
|
206 *result = candidate; |
|
207 } |
|
208 |
|
209 // free the working queue and return |
|
210 free(work); |
|
211 return ret; |
|
212 } |
|
213 |
|
214 int cx_tree_search_data( |
|
215 const void *root, |
|
216 const void *data, |
|
217 cx_tree_search_data_func sfunc, |
|
218 void **result, |
|
219 ptrdiff_t loc_children, |
|
220 ptrdiff_t loc_next |
|
221 ) { |
|
222 // it is basically the same implementation |
|
223 return cx_tree_search( |
|
224 root, data, |
|
225 (cx_tree_search_func) sfunc, |
|
226 result, |
|
227 loc_children, loc_next); |
|
228 } |
|
229 |
|
230 static bool cx_tree_iter_valid(const void *it) { |
|
231 const struct cx_tree_iterator_s *iter = it; |
|
232 return iter->node != NULL; |
|
233 } |
|
234 |
|
235 static void *cx_tree_iter_current(const void *it) { |
|
236 const struct cx_tree_iterator_s *iter = it; |
|
237 return iter->node; |
|
238 } |
|
239 |
|
240 static void cx_tree_iter_next(void *it) { |
|
241 struct cx_tree_iterator_s *iter = it; |
|
242 ptrdiff_t const loc_next = iter->loc_next; |
|
243 ptrdiff_t const loc_children = iter->loc_children; |
|
244 // protect us from misuse |
|
245 if (!iter->base.valid(iter)) return; |
|
246 |
|
247 void *children; |
|
248 |
|
249 // check if we are currently exiting or entering nodes |
|
250 if (iter->exiting) { |
|
251 children = NULL; |
|
252 // skipping on exit is pointless, just clear the flag |
|
253 iter->skip = false; |
|
254 } else { |
|
255 if (iter->skip) { |
|
256 // skip flag is set, pretend that there are no children |
|
257 iter->skip = false; |
|
258 children = NULL; |
|
259 } else { |
|
260 // try to enter the children (if any) |
|
261 children = tree_children(iter->node); |
|
262 } |
|
263 } |
|
264 |
|
265 if (children == NULL) { |
|
266 // search for the next node |
|
267 void *next; |
|
268 cx_tree_iter_search_next: |
|
269 // check if there is a sibling |
|
270 if (iter->exiting) { |
|
271 next = iter->node_next; |
|
272 } else { |
|
273 next = tree_next(iter->node); |
|
274 iter->node_next = next; |
|
275 } |
|
276 if (next == NULL) { |
|
277 // no sibling, we are done with this node and exit |
|
278 if (iter->visit_on_exit && !iter->exiting) { |
|
279 // iter is supposed to visit the node again |
|
280 iter->exiting = true; |
|
281 } else { |
|
282 iter->exiting = false; |
|
283 if (iter->depth == 1) { |
|
284 // there is no parent - we have iterated the entire tree |
|
285 // invalidate the iterator and free the node stack |
|
286 iter->node = iter->node_next = NULL; |
|
287 iter->stack_capacity = iter->depth = 0; |
|
288 free(iter->stack); |
|
289 iter->stack = NULL; |
|
290 } else { |
|
291 // the parent node can be obtained from the top of stack |
|
292 // this way we can avoid the loc_parent in the iterator |
|
293 iter->depth--; |
|
294 iter->node = iter->stack[iter->depth - 1]; |
|
295 // retry with the parent node to find a sibling |
|
296 goto cx_tree_iter_search_next; |
|
297 } |
|
298 } |
|
299 } else { |
|
300 if (iter->visit_on_exit && !iter->exiting) { |
|
301 // iter is supposed to visit the node again |
|
302 iter->exiting = true; |
|
303 } else { |
|
304 iter->exiting = false; |
|
305 // move to the sibling |
|
306 iter->counter++; |
|
307 iter->node = next; |
|
308 // new top of stack is the sibling |
|
309 iter->stack[iter->depth - 1] = next; |
|
310 } |
|
311 } |
|
312 } else { |
|
313 // node has children, push the first child onto the stack and enter it |
|
314 cx_array_simple_add(iter->stack, children); |
|
315 iter->node = children; |
|
316 iter->counter++; |
|
317 } |
|
318 } |
|
319 |
|
320 CxTreeIterator cx_tree_iterator( |
|
321 void *root, |
|
322 bool visit_on_exit, |
|
323 ptrdiff_t loc_children, |
|
324 ptrdiff_t loc_next |
|
325 ) { |
|
326 CxTreeIterator iter; |
|
327 iter.loc_children = loc_children; |
|
328 iter.loc_next = loc_next; |
|
329 iter.visit_on_exit = visit_on_exit; |
|
330 |
|
331 // initialize members |
|
332 iter.node_next = NULL; |
|
333 iter.exiting = false; |
|
334 iter.skip = false; |
|
335 |
|
336 // assign base iterator functions |
|
337 iter.base.mutating = false; |
|
338 iter.base.remove = false; |
|
339 iter.base.current_impl = NULL; |
|
340 iter.base.valid = cx_tree_iter_valid; |
|
341 iter.base.next = cx_tree_iter_next; |
|
342 iter.base.current = cx_tree_iter_current; |
|
343 |
|
344 // visit the root node |
|
345 iter.node = root; |
|
346 if (root != NULL) { |
|
347 iter.stack_capacity = 16; |
|
348 iter.stack = malloc(sizeof(void *) * 16); |
|
349 iter.stack[0] = root; |
|
350 iter.counter = 1; |
|
351 iter.depth = 1; |
|
352 } else { |
|
353 iter.stack_capacity = 0; |
|
354 iter.stack = NULL; |
|
355 iter.counter = 0; |
|
356 iter.depth = 0; |
|
357 } |
|
358 |
|
359 return iter; |
|
360 } |
|
361 |
|
362 static bool cx_tree_visitor_valid(const void *it) { |
|
363 const struct cx_tree_visitor_s *iter = it; |
|
364 return iter->node != NULL; |
|
365 } |
|
366 |
|
367 static void *cx_tree_visitor_current(const void *it) { |
|
368 const struct cx_tree_visitor_s *iter = it; |
|
369 return iter->node; |
|
370 } |
|
371 |
|
372 __attribute__((__nonnull__)) |
|
373 static void cx_tree_visitor_enqueue_siblings( |
|
374 struct cx_tree_visitor_s *iter, void *node, ptrdiff_t loc_next) { |
|
375 node = tree_next(node); |
|
376 while (node != NULL) { |
|
377 struct cx_tree_visitor_queue_s *q; |
|
378 q = malloc(sizeof(struct cx_tree_visitor_queue_s)); |
|
379 q->depth = iter->queue_last->depth; |
|
380 q->node = node; |
|
381 iter->queue_last->next = q; |
|
382 iter->queue_last = q; |
|
383 node = tree_next(node); |
|
384 } |
|
385 iter->queue_last->next = NULL; |
|
386 } |
|
387 |
|
388 static void cx_tree_visitor_next(void *it) { |
|
389 struct cx_tree_visitor_s *iter = it; |
|
390 // protect us from misuse |
|
391 if (!iter->base.valid(iter)) return; |
|
392 |
|
393 ptrdiff_t const loc_next = iter->loc_next; |
|
394 ptrdiff_t const loc_children = iter->loc_children; |
|
395 |
|
396 // add the children of the current node to the queue |
|
397 // unless the skip flag is set |
|
398 void *children; |
|
399 if (iter->skip) { |
|
400 iter->skip = false; |
|
401 children = NULL; |
|
402 } else { |
|
403 children = tree_children(iter->node); |
|
404 } |
|
405 if (children != NULL) { |
|
406 struct cx_tree_visitor_queue_s *q; |
|
407 q = malloc(sizeof(struct cx_tree_visitor_queue_s)); |
|
408 q->depth = iter->depth + 1; |
|
409 q->node = children; |
|
410 if (iter->queue_last == NULL) { |
|
411 assert(iter->queue_next == NULL); |
|
412 iter->queue_next = q; |
|
413 } else { |
|
414 iter->queue_last->next = q; |
|
415 } |
|
416 iter->queue_last = q; |
|
417 cx_tree_visitor_enqueue_siblings(iter, children, loc_next); |
|
418 } |
|
419 |
|
420 // check if there is a next node |
|
421 if (iter->queue_next == NULL) { |
|
422 iter->node = NULL; |
|
423 return; |
|
424 } |
|
425 |
|
426 // dequeue the next node |
|
427 iter->node = iter->queue_next->node; |
|
428 iter->depth = iter->queue_next->depth; |
|
429 { |
|
430 struct cx_tree_visitor_queue_s *q = iter->queue_next; |
|
431 iter->queue_next = q->next; |
|
432 if (iter->queue_next == NULL) { |
|
433 assert(iter->queue_last == q); |
|
434 iter->queue_last = NULL; |
|
435 } |
|
436 free(q); |
|
437 } |
|
438 |
|
439 // increment the node counter |
|
440 iter->counter++; |
|
441 } |
|
442 |
|
443 CxTreeVisitor cx_tree_visitor( |
|
444 void *root, |
|
445 ptrdiff_t loc_children, |
|
446 ptrdiff_t loc_next |
|
447 ) { |
|
448 CxTreeVisitor iter; |
|
449 iter.loc_children = loc_children; |
|
450 iter.loc_next = loc_next; |
|
451 |
|
452 // initialize members |
|
453 iter.skip = false; |
|
454 iter.queue_next = NULL; |
|
455 iter.queue_last = NULL; |
|
456 |
|
457 // assign base iterator functions |
|
458 iter.base.mutating = false; |
|
459 iter.base.remove = false; |
|
460 iter.base.current_impl = NULL; |
|
461 iter.base.valid = cx_tree_visitor_valid; |
|
462 iter.base.next = cx_tree_visitor_next; |
|
463 iter.base.current = cx_tree_visitor_current; |
|
464 |
|
465 // visit the root node |
|
466 iter.node = root; |
|
467 if (root != NULL) { |
|
468 iter.counter = 1; |
|
469 iter.depth = 1; |
|
470 } else { |
|
471 iter.counter = 0; |
|
472 iter.depth = 0; |
|
473 } |
|
474 |
|
475 return iter; |
|
476 } |
|
477 |
|
478 static void cx_tree_add_link_duplicate( |
|
479 void *original, void *duplicate, |
|
480 ptrdiff_t loc_parent, ptrdiff_t loc_children, ptrdiff_t loc_last_child, |
|
481 ptrdiff_t loc_prev, ptrdiff_t loc_next |
|
482 ) { |
|
483 void *shared_parent = tree_parent(original); |
|
484 if (shared_parent == NULL) { |
|
485 cx_tree_link(original, duplicate, cx_tree_ptr_locations); |
|
486 } else { |
|
487 cx_tree_link(shared_parent, duplicate, cx_tree_ptr_locations); |
|
488 } |
|
489 } |
|
490 |
|
491 static void cx_tree_add_link_new( |
|
492 void *parent, void *node, cx_tree_search_func sfunc, |
|
493 ptrdiff_t loc_parent, ptrdiff_t loc_children, ptrdiff_t loc_last_child, |
|
494 ptrdiff_t loc_prev, ptrdiff_t loc_next |
|
495 ) { |
|
496 // check the current children one by one, |
|
497 // if they could be children of the new node |
|
498 void *child = tree_children(parent); |
|
499 while (child != NULL) { |
|
500 void *next = tree_next(child); |
|
501 |
|
502 if (sfunc(node, child) > 0) { |
|
503 // the sibling could be a child -> re-link |
|
504 cx_tree_link(node, child, cx_tree_ptr_locations); |
|
505 } |
|
506 |
|
507 child = next; |
|
508 } |
|
509 |
|
510 // add new node as new child |
|
511 cx_tree_link(parent, node, cx_tree_ptr_locations); |
|
512 } |
|
513 |
|
514 int cx_tree_add( |
|
515 const void *src, |
|
516 cx_tree_search_func sfunc, |
|
517 cx_tree_node_create_func cfunc, |
|
518 void *cdata, |
|
519 void **cnode, |
|
520 void *root, |
|
521 ptrdiff_t loc_parent, |
|
522 ptrdiff_t loc_children, |
|
523 ptrdiff_t loc_last_child, |
|
524 ptrdiff_t loc_prev, |
|
525 ptrdiff_t loc_next |
|
526 ) { |
|
527 *cnode = cfunc(src, cdata); |
|
528 if (*cnode == NULL) return 1; |
|
529 cx_tree_zero_pointers(*cnode, cx_tree_ptr_locations); |
|
530 |
|
531 void *match = NULL; |
|
532 int result = cx_tree_search( |
|
533 root, |
|
534 *cnode, |
|
535 sfunc, |
|
536 &match, |
|
537 loc_children, |
|
538 loc_next |
|
539 ); |
|
540 |
|
541 if (result < 0) { |
|
542 // node does not fit into the tree - return non-zero value |
|
543 return 1; |
|
544 } else if (result == 0) { |
|
545 // data already found in the tree, link duplicate |
|
546 cx_tree_add_link_duplicate(match, *cnode, cx_tree_ptr_locations); |
|
547 } else { |
|
548 // closest match found, add new node |
|
549 cx_tree_add_link_new(match, *cnode, sfunc, cx_tree_ptr_locations); |
|
550 } |
|
551 |
|
552 return 0; |
|
553 } |
|
554 |
|
555 unsigned int cx_tree_add_look_around_depth = 3; |
|
556 |
|
557 size_t cx_tree_add_iter( |
|
558 struct cx_iterator_base_s *iter, |
|
559 size_t num, |
|
560 cx_tree_search_func sfunc, |
|
561 cx_tree_node_create_func cfunc, |
|
562 void *cdata, |
|
563 void **failed, |
|
564 void *root, |
|
565 ptrdiff_t loc_parent, |
|
566 ptrdiff_t loc_children, |
|
567 ptrdiff_t loc_last_child, |
|
568 ptrdiff_t loc_prev, |
|
569 ptrdiff_t loc_next |
|
570 ) { |
|
571 // erase the failed pointer |
|
572 *failed = NULL; |
|
573 |
|
574 // iter not valid? cancel... |
|
575 if (!iter->valid(iter)) return 0; |
|
576 |
|
577 size_t processed = 0; |
|
578 void *current_node = root; |
|
579 const void *elem; |
|
580 |
|
581 for (void **eptr; processed < num && |
|
582 iter->valid(iter) && (eptr = iter->current(iter)) != NULL; |
|
583 iter->next(iter)) { |
|
584 elem = *eptr; |
|
585 |
|
586 // create the new node |
|
587 void *new_node = cfunc(elem, cdata); |
|
588 if (new_node == NULL) return processed; |
|
589 cx_tree_zero_pointers(new_node, cx_tree_ptr_locations); |
|
590 |
|
591 // start searching from current node |
|
592 void *match; |
|
593 int result; |
|
594 unsigned int look_around_retries = cx_tree_add_look_around_depth; |
|
595 cx_tree_add_look_around_retry: |
|
596 result = cx_tree_search( |
|
597 current_node, |
|
598 new_node, |
|
599 sfunc, |
|
600 &match, |
|
601 loc_children, |
|
602 loc_next |
|
603 ); |
|
604 |
|
605 if (result < 0) { |
|
606 // traverse upwards and try to find better parents |
|
607 void *parent = tree_parent(current_node); |
|
608 if (parent != NULL) { |
|
609 if (look_around_retries > 0) { |
|
610 look_around_retries--; |
|
611 current_node = parent; |
|
612 } else { |
|
613 // look around retries exhausted, start from the root |
|
614 current_node = root; |
|
615 } |
|
616 goto cx_tree_add_look_around_retry; |
|
617 } else { |
|
618 // no parents. so we failed |
|
619 *failed = new_node; |
|
620 return processed; |
|
621 } |
|
622 } else if (result == 0) { |
|
623 // data already found in the tree, link duplicate |
|
624 cx_tree_add_link_duplicate(match, new_node, cx_tree_ptr_locations); |
|
625 // but stick with the original match, in case we needed a new root |
|
626 current_node = match; |
|
627 } else { |
|
628 // closest match found, add new node as child |
|
629 cx_tree_add_link_new(match, new_node, sfunc, |
|
630 cx_tree_ptr_locations); |
|
631 current_node = match; |
|
632 } |
|
633 |
|
634 processed++; |
|
635 } |
|
636 return processed; |
|
637 } |
|
638 |
|
639 size_t cx_tree_add_array( |
|
640 const void *src, |
|
641 size_t num, |
|
642 size_t elem_size, |
|
643 cx_tree_search_func sfunc, |
|
644 cx_tree_node_create_func cfunc, |
|
645 void *cdata, |
|
646 void **failed, |
|
647 void *root, |
|
648 ptrdiff_t loc_parent, |
|
649 ptrdiff_t loc_children, |
|
650 ptrdiff_t loc_last_child, |
|
651 ptrdiff_t loc_prev, |
|
652 ptrdiff_t loc_next |
|
653 ) { |
|
654 // erase failed pointer |
|
655 *failed = NULL; |
|
656 |
|
657 // super special case: zero elements |
|
658 if (num == 0) { |
|
659 return 0; |
|
660 } |
|
661 |
|
662 // special case: one element does not need an iterator |
|
663 if (num == 1) { |
|
664 void *node; |
|
665 if (0 == cx_tree_add( |
|
666 src, sfunc, cfunc, cdata, &node, root, |
|
667 loc_parent, loc_children, loc_last_child, |
|
668 loc_prev, loc_next)) { |
|
669 return 1; |
|
670 } else { |
|
671 *failed = node; |
|
672 return 0; |
|
673 } |
|
674 } |
|
675 |
|
676 // otherwise, create iterator and hand over to other function |
|
677 CxIterator iter = cxIterator(src, elem_size, num); |
|
678 return cx_tree_add_iter(cxIteratorRef(iter), num, sfunc, |
|
679 cfunc, cdata, failed, root, |
|
680 loc_parent, loc_children, loc_last_child, |
|
681 loc_prev, loc_next); |
|
682 } |
|
683 |
|
684 static void cx_tree_default_destructor(CxTree *tree) { |
|
685 if (tree->simple_destructor != NULL || tree->advanced_destructor != NULL) { |
|
686 CxTreeIterator iter = tree->cl->iterator(tree, true); |
|
687 cx_foreach(void *, node, iter) { |
|
688 if (iter.exiting) { |
|
689 if (tree->simple_destructor) { |
|
690 tree->simple_destructor(node); |
|
691 } |
|
692 if (tree->advanced_destructor) { |
|
693 tree->advanced_destructor(tree->destructor_data, node); |
|
694 } |
|
695 } |
|
696 } |
|
697 } |
|
698 cxFree(tree->allocator, tree); |
|
699 } |
|
700 |
|
701 static CxTreeIterator cx_tree_default_iterator( |
|
702 CxTree *tree, |
|
703 bool visit_on_exit |
|
704 ) { |
|
705 return cx_tree_iterator( |
|
706 tree->root, visit_on_exit, |
|
707 tree->loc_children, tree->loc_next |
|
708 ); |
|
709 } |
|
710 |
|
711 static CxTreeVisitor cx_tree_default_visitor(CxTree *tree) { |
|
712 return cx_tree_visitor(tree->root, tree->loc_children, tree->loc_next); |
|
713 } |
|
714 |
|
715 static int cx_tree_default_insert_element( |
|
716 CxTree *tree, |
|
717 const void *data |
|
718 ) { |
|
719 void *node; |
|
720 if (tree->root == NULL) { |
|
721 node = tree->node_create(data, tree); |
|
722 if (node == NULL) return 1; |
|
723 cx_tree_zero_pointers(node, cx_tree_node_layout(tree)); |
|
724 tree->root = node; |
|
725 tree->size = 1; |
|
726 return 0; |
|
727 } |
|
728 int result = cx_tree_add(data, tree->search, tree->node_create, |
|
729 tree, &node, tree->root, cx_tree_node_layout(tree)); |
|
730 if (0 == result) { |
|
731 tree->size++; |
|
732 } else { |
|
733 cxFree(tree->allocator, node); |
|
734 } |
|
735 return result; |
|
736 } |
|
737 |
|
738 static size_t cx_tree_default_insert_many( |
|
739 CxTree *tree, |
|
740 struct cx_iterator_base_s *iter, |
|
741 size_t n |
|
742 ) { |
|
743 size_t ins = 0; |
|
744 if (!iter->valid(iter)) return 0; |
|
745 if (tree->root == NULL) { |
|
746 // use the first element from the iter to create the root node |
|
747 void **eptr = iter->current(iter); |
|
748 void *node = tree->node_create(*eptr, tree); |
|
749 if (node == NULL) return 0; |
|
750 cx_tree_zero_pointers(node, cx_tree_node_layout(tree)); |
|
751 tree->root = node; |
|
752 ins = 1; |
|
753 iter->next(iter); |
|
754 } |
|
755 void *failed; |
|
756 ins += cx_tree_add_iter(iter, n, tree->search, tree->node_create, |
|
757 tree, &failed, tree->root, cx_tree_node_layout(tree)); |
|
758 tree->size += ins; |
|
759 if (ins < n) { |
|
760 cxFree(tree->allocator, failed); |
|
761 } |
|
762 return ins; |
|
763 } |
|
764 |
|
765 static void *cx_tree_default_find( |
|
766 CxTree *tree, |
|
767 const void *subtree, |
|
768 const void *data |
|
769 ) { |
|
770 if (tree->root == NULL) return NULL; |
|
771 |
|
772 void *found; |
|
773 if (0 == cx_tree_search_data( |
|
774 subtree, |
|
775 data, |
|
776 tree->search_data, |
|
777 &found, |
|
778 tree->loc_children, |
|
779 tree->loc_next |
|
780 )) { |
|
781 return found; |
|
782 } else { |
|
783 return NULL; |
|
784 } |
|
785 } |
|
786 |
|
787 static cx_tree_class cx_tree_default_class = { |
|
788 cx_tree_default_destructor, |
|
789 cx_tree_default_insert_element, |
|
790 cx_tree_default_insert_many, |
|
791 cx_tree_default_find, |
|
792 cx_tree_default_iterator, |
|
793 cx_tree_default_visitor |
|
794 }; |
|
795 |
|
796 CxTree *cxTreeCreate( |
|
797 const CxAllocator *allocator, |
|
798 cx_tree_node_create_func create_func, |
|
799 cx_tree_search_func search_func, |
|
800 cx_tree_search_data_func search_data_func, |
|
801 ptrdiff_t loc_parent, |
|
802 ptrdiff_t loc_children, |
|
803 ptrdiff_t loc_last_child, |
|
804 ptrdiff_t loc_prev, |
|
805 ptrdiff_t loc_next |
|
806 ) { |
|
807 CxTree *tree = cxMalloc(allocator, sizeof(CxTree)); |
|
808 if (tree == NULL) return NULL; |
|
809 |
|
810 tree->cl = &cx_tree_default_class; |
|
811 tree->allocator = allocator; |
|
812 tree->node_create = create_func; |
|
813 tree->search = search_func; |
|
814 tree->search_data = search_data_func; |
|
815 tree->advanced_destructor = (cx_destructor_func2) cxFree; |
|
816 tree->destructor_data = (void *) allocator; |
|
817 tree->loc_parent = loc_parent; |
|
818 tree->loc_children = loc_children; |
|
819 tree->loc_last_child = loc_last_child; |
|
820 tree->loc_prev = loc_prev; |
|
821 tree->loc_next = loc_next; |
|
822 tree->root = NULL; |
|
823 tree->size = 0; |
|
824 |
|
825 return tree; |
|
826 } |
|
827 |
|
828 CxTree *cxTreeCreateWrapped( |
|
829 const CxAllocator *allocator, |
|
830 void *root, |
|
831 ptrdiff_t loc_parent, |
|
832 ptrdiff_t loc_children, |
|
833 ptrdiff_t loc_last_child, |
|
834 ptrdiff_t loc_prev, |
|
835 ptrdiff_t loc_next |
|
836 ) { |
|
837 CxTree *tree = cxMalloc(allocator, sizeof(CxTree)); |
|
838 if (tree == NULL) return NULL; |
|
839 |
|
840 tree->cl = &cx_tree_default_class; |
|
841 // set the allocator anyway, just in case... |
|
842 tree->allocator = allocator; |
|
843 tree->node_create = NULL; |
|
844 tree->search = NULL; |
|
845 tree->search_data = NULL; |
|
846 tree->simple_destructor = NULL; |
|
847 tree->advanced_destructor = NULL; |
|
848 tree->destructor_data = NULL; |
|
849 tree->loc_parent = loc_parent; |
|
850 tree->loc_children = loc_children; |
|
851 tree->loc_last_child = loc_last_child; |
|
852 tree->loc_prev = loc_prev; |
|
853 tree->loc_next = loc_next; |
|
854 tree->root = root; |
|
855 tree->size = cxTreeSubtreeSize(tree, root); |
|
856 return tree; |
|
857 } |
|
858 |
|
859 int cxTreeAddChild( |
|
860 CxTree *tree, |
|
861 void *parent, |
|
862 const void *data) { |
|
863 void *node = tree->node_create(data, tree); |
|
864 if (node == NULL) return 1; |
|
865 cx_tree_zero_pointers(node, cx_tree_node_layout(tree)); |
|
866 cx_tree_link(parent, node, cx_tree_node_layout(tree)); |
|
867 tree->size++; |
|
868 return 0; |
|
869 } |
|
870 |
|
871 size_t cxTreeSubtreeSize(CxTree *tree, void *subtree_root) { |
|
872 CxTreeVisitor visitor = cx_tree_visitor( |
|
873 subtree_root, |
|
874 tree->loc_children, |
|
875 tree->loc_next |
|
876 ); |
|
877 while (cxIteratorValid(visitor)) { |
|
878 cxIteratorNext(visitor); |
|
879 } |
|
880 return visitor.counter; |
|
881 } |
|
882 |
|
883 size_t cxTreeSubtreeDepth(CxTree *tree, void *subtree_root) { |
|
884 CxTreeVisitor visitor = cx_tree_visitor( |
|
885 subtree_root, |
|
886 tree->loc_children, |
|
887 tree->loc_next |
|
888 ); |
|
889 while (cxIteratorValid(visitor)) { |
|
890 cxIteratorNext(visitor); |
|
891 } |
|
892 return visitor.depth; |
|
893 } |
|
894 |
|
895 size_t cxTreeDepth(CxTree *tree) { |
|
896 CxTreeVisitor visitor = tree->cl->visitor(tree); |
|
897 while (cxIteratorValid(visitor)) { |
|
898 cxIteratorNext(visitor); |
|
899 } |
|
900 return visitor.depth; |
|
901 } |
|
902 |
|
903 int cxTreeRemove( |
|
904 CxTree *tree, |
|
905 void *node, |
|
906 cx_tree_relink_func relink_func |
|
907 ) { |
|
908 if (node == tree->root) return 1; |
|
909 |
|
910 // determine the new parent |
|
911 ptrdiff_t loc_parent = tree->loc_parent; |
|
912 void *new_parent = tree_parent(node); |
|
913 |
|
914 // first, unlink from the parent |
|
915 cx_tree_unlink(node, cx_tree_node_layout(tree)); |
|
916 |
|
917 // then relink each child |
|
918 ptrdiff_t loc_children = tree->loc_children; |
|
919 ptrdiff_t loc_next = tree->loc_next; |
|
920 void *child = tree_children(node); |
|
921 while (child != NULL) { |
|
922 // forcibly set the parent to NULL - we do not use the unlink function |
|
923 // because that would unnecessarily modify the children linked list |
|
924 tree_parent(child) = NULL; |
|
925 |
|
926 // update contents, if required |
|
927 if (relink_func != NULL) { |
|
928 relink_func(child, node, new_parent); |
|
929 } |
|
930 |
|
931 // link to new parent |
|
932 cx_tree_link(new_parent, child, cx_tree_node_layout(tree)); |
|
933 |
|
934 // proceed to next child |
|
935 child = tree_next(child); |
|
936 } |
|
937 |
|
938 // clear the linked list of the removed node |
|
939 tree_children(node) = NULL; |
|
940 ptrdiff_t loc_last_child = tree->loc_last_child; |
|
941 if (loc_last_child >= 0) tree_last_child(node) = NULL; |
|
942 |
|
943 // the tree now has one member less |
|
944 tree->size--; |
|
945 |
|
946 return 0; |
|
947 } |
|
948 |
|
949 void cxTreeRemoveSubtree(CxTree *tree, void *node) { |
|
950 if (node == tree->root) { |
|
951 tree->root = NULL; |
|
952 tree->size = 0; |
|
953 return; |
|
954 } |
|
955 size_t subtree_size = cxTreeSubtreeSize(tree, node); |
|
956 cx_tree_unlink(node, cx_tree_node_layout(tree)); |
|
957 tree->size -= subtree_size; |
|
958 } |