diff -r fe49cff3c571 -r bb7da585debc ucx/array_list.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ucx/array_list.c Sat Jan 04 16:38:48 2025 +0100 @@ -0,0 +1,767 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. + * + * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include "cx/array_list.h" +#include "cx/compare.h" +#include +#include + +// Default array reallocator + +static void *cx_array_default_realloc( + void *array, + size_t capacity, + size_t elem_size, + __attribute__((__unused__)) struct cx_array_reallocator_s *alloc +) { + return realloc(array, capacity * elem_size); +} + +struct cx_array_reallocator_s cx_array_default_reallocator_impl = { + cx_array_default_realloc, NULL, NULL, 0, 0 +}; + +struct cx_array_reallocator_s *cx_array_default_reallocator = &cx_array_default_reallocator_impl; + +// LOW LEVEL ARRAY LIST FUNCTIONS + +enum cx_array_result cx_array_copy( + void **target, + size_t *size, + size_t *capacity, + size_t index, + const void *src, + size_t elem_size, + size_t elem_count, + struct cx_array_reallocator_s *reallocator +) { + // assert pointers + assert(target != NULL); + assert(size != NULL); + assert(src != NULL); + + // determine capacity + size_t cap = capacity == NULL ? *size : *capacity; + + // check if resize is required + size_t minsize = index + elem_count; + size_t newsize = *size < minsize ? minsize : *size; + bool needrealloc = newsize > cap; + + // reallocate if possible + if (needrealloc) { + // a reallocator and a capacity variable must be available + if (reallocator == NULL || capacity == NULL) { + return CX_ARRAY_REALLOC_NOT_SUPPORTED; + } + + // check, if we need to repair the src pointer + uintptr_t targetaddr = (uintptr_t) *target; + uintptr_t srcaddr = (uintptr_t) src; + bool repairsrc = targetaddr <= srcaddr + && srcaddr < targetaddr + cap * elem_size; + + // calculate new capacity (next number divisible by 16) + cap = newsize - (newsize % 16) + 16; + assert(cap > newsize); + + // perform reallocation + void *newmem = reallocator->realloc( + *target, cap, elem_size, reallocator + ); + if (newmem == NULL) { + return CX_ARRAY_REALLOC_FAILED; + } + + // repair src pointer, if necessary + if (repairsrc) { + src = ((char *) newmem) + (srcaddr - targetaddr); + } + + // store new pointer and capacity + *target = newmem; + *capacity = cap; + } + + // determine target pointer + char *start = *target; + start += index * elem_size; + + // copy elements and set new size + memmove(start, src, elem_count * elem_size); + *size = newsize; + + // return successfully + return CX_ARRAY_SUCCESS; +} + +enum cx_array_result cx_array_insert_sorted( + void **target, + size_t *size, + size_t *capacity, + cx_compare_func cmp_func, + const void *sorted_data, + size_t elem_size, + size_t elem_count, + struct cx_array_reallocator_s *reallocator +) { + // assert pointers + assert(target != NULL); + assert(size != NULL); + assert(capacity != NULL); + assert(cmp_func != NULL); + assert(sorted_data != NULL); + assert(reallocator != NULL); + + // corner case + if (elem_count == 0) return 0; + + // store some counts + size_t old_size = *size; + size_t needed_capacity = old_size + elem_count; + + // if we need more than we have, try a reallocation + if (needed_capacity > *capacity) { + size_t new_capacity = needed_capacity - (needed_capacity % 16) + 16; + void *new_mem = reallocator->realloc( + *target, new_capacity, elem_size, reallocator + ); + if (new_mem == NULL) { + // give it up right away, there is no contract + // that requires us to insert as much as we can + return CX_ARRAY_REALLOC_FAILED; + } + *target = new_mem; + *capacity = new_capacity; + } + + // now we have guaranteed that we can insert everything + size_t new_size = old_size + elem_count; + *size = new_size; + + // declare the source and destination indices/pointers + size_t si = 0, di = 0; + const char *src = sorted_data; + char *dest = *target; + + // find the first insertion point + di = cx_array_binary_search_sup(dest, old_size, elem_size, src, cmp_func); + dest += di * elem_size; + + // move the remaining elements in the array completely to the right + // we will call it the "buffer" for parked elements + size_t buf_size = old_size - di; + size_t bi = new_size - buf_size; + char *bptr = ((char *) *target) + bi * elem_size; + memmove(bptr, dest, buf_size * elem_size); + + // while there are both source and buffered elements left, + // copy them interleaving + while (si < elem_count && bi < new_size) { + // determine how many source elements can be inserted + size_t copy_len, bytes_copied; + copy_len = cx_array_binary_search_sup( + src, + elem_count - si, + elem_size, + bptr, + cmp_func + ); + + // copy the source elements + bytes_copied = copy_len * elem_size; + memcpy(dest, src, bytes_copied); + dest += bytes_copied; + src += bytes_copied; + si += copy_len; + + // when all source elements are in place, we are done + if (si >= elem_count) break; + + // determine how many buffered elements need to be restored + copy_len = cx_array_binary_search_sup( + bptr, + new_size - bi, + elem_size, + src, + cmp_func + ); + + // restore the buffered elements + bytes_copied = copy_len * elem_size; + memmove(dest, bptr, bytes_copied); + dest += bytes_copied; + bptr += bytes_copied; + bi += copy_len; + } + + // still source elements left? simply append them + if (si < elem_count) { + memcpy(dest, src, elem_size * (elem_count - si)); + } + + // still buffer elements left? + // don't worry, we already moved them to the correct place + + return CX_ARRAY_SUCCESS; +} + +size_t cx_array_binary_search_inf( + const void *arr, + size_t size, + size_t elem_size, + const void *elem, + cx_compare_func cmp_func +) { + // special case: empty array + if (size == 0) return 0; + + // declare a variable that will contain the compare results + int result; + + // cast the array pointer to something we can use offsets with + const char *array = arr; + + // check the first array element + result = cmp_func(elem, array); + if (result < 0) { + return size; + } else if (result == 0) { + return 0; + } + + // check the last array element + result = cmp_func(elem, array + elem_size * (size - 1)); + if (result >= 0) { + return size - 1; + } + + // the element is now guaranteed to be somewhere in the list + // so start the binary search + size_t left_index = 1; + size_t right_index = size - 1; + size_t pivot_index; + + while (left_index <= right_index) { + pivot_index = left_index + (right_index - left_index) / 2; + const char *arr_elem = array + pivot_index * elem_size; + result = cmp_func(elem, arr_elem); + if (result == 0) { + // found it! + return pivot_index; + } else if (result < 0) { + // element is smaller than pivot, continue search left + right_index = pivot_index - 1; + } else { + // element is larger than pivot, continue search right + left_index = pivot_index + 1; + } + } + + // report the largest upper bound + return result < 0 ? (pivot_index - 1) : pivot_index; +} + +#ifndef CX_ARRAY_SWAP_SBO_SIZE +#define CX_ARRAY_SWAP_SBO_SIZE 128 +#endif +unsigned cx_array_swap_sbo_size = CX_ARRAY_SWAP_SBO_SIZE; + +void cx_array_swap( + void *arr, + size_t elem_size, + size_t idx1, + size_t idx2 +) { + assert(arr != NULL); + + // short circuit + if (idx1 == idx2) return; + + char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE]; + void *tmp; + + // decide if we can use the local buffer + if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) { + tmp = malloc(elem_size); + // we don't want to enforce error handling + if (tmp == NULL) abort(); + } else { + tmp = sbo_mem; + } + + // calculate memory locations + char *left = arr, *right = arr; + left += idx1 * elem_size; + right += idx2 * elem_size; + + // three-way swap + memcpy(tmp, left, elem_size); + memcpy(left, right, elem_size); + memcpy(right, tmp, elem_size); + + // free dynamic memory, if it was needed + if (tmp != sbo_mem) { + free(tmp); + } +} + +// HIGH LEVEL ARRAY LIST FUNCTIONS + +typedef struct { + struct cx_list_s base; + void *data; + size_t capacity; + struct cx_array_reallocator_s reallocator; +} cx_array_list; + +static void *cx_arl_realloc( + void *array, + size_t capacity, + size_t elem_size, + struct cx_array_reallocator_s *alloc +) { + // retrieve the pointer to the list allocator + const CxAllocator *al = alloc->ptr1; + + // use the list allocator to reallocate the memory + return cxRealloc(al, array, capacity * elem_size); +} + +static void cx_arl_destructor(struct cx_list_s *list) { + cx_array_list *arl = (cx_array_list *) list; + + char *ptr = arl->data; + + if (list->collection.simple_destructor) { + for (size_t i = 0; i < list->collection.size; i++) { + cx_invoke_simple_destructor(list, ptr); + ptr += list->collection.elem_size; + } + } + if (list->collection.advanced_destructor) { + for (size_t i = 0; i < list->collection.size; i++) { + cx_invoke_advanced_destructor(list, ptr); + ptr += list->collection.elem_size; + } + } + + cxFree(list->collection.allocator, arl->data); + cxFree(list->collection.allocator, list); +} + +static size_t cx_arl_insert_array( + struct cx_list_s *list, + size_t index, + const void *array, + size_t n +) { + // out of bounds and special case check + if (index > list->collection.size || n == 0) return 0; + + // get a correctly typed pointer to the list + cx_array_list *arl = (cx_array_list *) list; + + // do we need to move some elements? + if (index < list->collection.size) { + const char *first_to_move = (const char *) arl->data; + first_to_move += index * list->collection.elem_size; + size_t elems_to_move = list->collection.size - index; + size_t start_of_moved = index + n; + + if (CX_ARRAY_SUCCESS != cx_array_copy( + &arl->data, + &list->collection.size, + &arl->capacity, + start_of_moved, + first_to_move, + list->collection.elem_size, + elems_to_move, + &arl->reallocator + )) { + // if moving existing elems is unsuccessful, abort + return 0; + } + } + + // note that if we had to move the elements, the following operation + // is guaranteed to succeed, because we have the memory already allocated + // therefore, it is impossible to leave this function with an invalid array + + // place the new elements + if (CX_ARRAY_SUCCESS == cx_array_copy( + &arl->data, + &list->collection.size, + &arl->capacity, + index, + array, + list->collection.elem_size, + n, + &arl->reallocator + )) { + return n; + } else { + // array list implementation is "all or nothing" + return 0; + } +} + +static size_t cx_arl_insert_sorted( + struct cx_list_s *list, + const void *sorted_data, + size_t n +) { + // get a correctly typed pointer to the list + cx_array_list *arl = (cx_array_list *) list; + + if (CX_ARRAY_SUCCESS == cx_array_insert_sorted( + &arl->data, + &list->collection.size, + &arl->capacity, + list->collection.cmpfunc, + sorted_data, + list->collection.elem_size, + n, + &arl->reallocator + )) { + return n; + } else { + // array list implementation is "all or nothing" + return 0; + } +} + +static int cx_arl_insert_element( + struct cx_list_s *list, + size_t index, + const void *element +) { + return 1 != cx_arl_insert_array(list, index, element, 1); +} + +static int cx_arl_insert_iter( + struct cx_iterator_s *iter, + const void *elem, + int prepend +) { + struct cx_list_s *list = iter->src_handle.m; + if (iter->index < list->collection.size) { + int result = cx_arl_insert_element( + list, + iter->index + 1 - prepend, + elem + ); + if (result == 0) { + iter->elem_count++; + if (prepend != 0) { + iter->index++; + iter->elem_handle = ((char *) iter->elem_handle) + list->collection.elem_size; + } + } + return result; + } else { + int result = cx_arl_insert_element(list, list->collection.size, elem); + if (result == 0) { + iter->elem_count++; + iter->index = list->collection.size; + } + return result; + } +} + +static int cx_arl_remove( + struct cx_list_s *list, + size_t index +) { + cx_array_list *arl = (cx_array_list *) list; + + // out-of-bounds check + if (index >= list->collection.size) { + return 1; + } + + // content destruction + cx_invoke_destructor(list, ((char *) arl->data) + index * list->collection.elem_size); + + // short-circuit removal of last element + if (index == list->collection.size - 1) { + list->collection.size--; + return 0; + } + + // just move the elements starting at index to the left + int result = cx_array_copy( + &arl->data, + &list->collection.size, + &arl->capacity, + index, + ((char *) arl->data) + (index + 1) * list->collection.elem_size, + list->collection.elem_size, + list->collection.size - index - 1, + &arl->reallocator + ); + + // cx_array_copy cannot fail, array cannot grow + assert(result == 0); + + // decrease the size + list->collection.size--; + + return 0; +} + +static void cx_arl_clear(struct cx_list_s *list) { + if (list->collection.size == 0) return; + + cx_array_list *arl = (cx_array_list *) list; + char *ptr = arl->data; + + if (list->collection.simple_destructor) { + for (size_t i = 0; i < list->collection.size; i++) { + cx_invoke_simple_destructor(list, ptr); + ptr += list->collection.elem_size; + } + } + if (list->collection.advanced_destructor) { + for (size_t i = 0; i < list->collection.size; i++) { + cx_invoke_advanced_destructor(list, ptr); + ptr += list->collection.elem_size; + } + } + + memset(arl->data, 0, list->collection.size * list->collection.elem_size); + list->collection.size = 0; +} + +static int cx_arl_swap( + struct cx_list_s *list, + size_t i, + size_t j +) { + if (i >= list->collection.size || j >= list->collection.size) return 1; + cx_array_list *arl = (cx_array_list *) list; + cx_array_swap(arl->data, list->collection.elem_size, i, j); + return 0; +} + +static void *cx_arl_at( + const struct cx_list_s *list, + size_t index +) { + if (index < list->collection.size) { + const cx_array_list *arl = (const cx_array_list *) list; + char *space = arl->data; + return space + index * list->collection.elem_size; + } else { + return NULL; + } +} + +static ssize_t cx_arl_find_remove( + struct cx_list_s *list, + const void *elem, + bool remove +) { + assert(list->collection.cmpfunc != NULL); + assert(list->collection.size < SIZE_MAX / 2); + char *cur = ((const cx_array_list *) list)->data; + + for (ssize_t i = 0; i < (ssize_t) list->collection.size; i++) { + if (0 == list->collection.cmpfunc(elem, cur)) { + if (remove) { + if (0 == cx_arl_remove(list, i)) { + return i; + } else { + return -1; + } + } else { + return i; + } + } + cur += list->collection.elem_size; + } + + return -1; +} + +static void cx_arl_sort(struct cx_list_s *list) { + assert(list->collection.cmpfunc != NULL); + qsort(((cx_array_list *) list)->data, + list->collection.size, + list->collection.elem_size, + list->collection.cmpfunc + ); +} + +static int cx_arl_compare( + const struct cx_list_s *list, + const struct cx_list_s *other +) { + assert(list->collection.cmpfunc != NULL); + if (list->collection.size == other->collection.size) { + const char *left = ((const cx_array_list *) list)->data; + const char *right = ((const cx_array_list *) other)->data; + for (size_t i = 0; i < list->collection.size; i++) { + int d = list->collection.cmpfunc(left, right); + if (d != 0) { + return d; + } + left += list->collection.elem_size; + right += other->collection.elem_size; + } + return 0; + } else { + return list->collection.size < other->collection.size ? -1 : 1; + } +} + +static void cx_arl_reverse(struct cx_list_s *list) { + if (list->collection.size < 2) return; + void *data = ((const cx_array_list *) list)->data; + size_t half = list->collection.size / 2; + for (size_t i = 0; i < half; i++) { + cx_array_swap(data, list->collection.elem_size, i, list->collection.size - 1 - i); + } +} + +static bool cx_arl_iter_valid(const void *it) { + const struct cx_iterator_s *iter = it; + const struct cx_list_s *list = iter->src_handle.c; + return iter->index < list->collection.size; +} + +static void *cx_arl_iter_current(const void *it) { + const struct cx_iterator_s *iter = it; + return iter->elem_handle; +} + +static void cx_arl_iter_next(void *it) { + struct cx_iterator_s *iter = it; + if (iter->base.remove) { + iter->base.remove = false; + cx_arl_remove(iter->src_handle.m, iter->index); + } else { + iter->index++; + iter->elem_handle = + ((char *) iter->elem_handle) + + ((const struct cx_list_s *) iter->src_handle.c)->collection.elem_size; + } +} + +static void cx_arl_iter_prev(void *it) { + struct cx_iterator_s *iter = it; + const cx_array_list *list = iter->src_handle.c; + if (iter->base.remove) { + iter->base.remove = false; + cx_arl_remove(iter->src_handle.m, iter->index); + } + iter->index--; + if (iter->index < list->base.collection.size) { + iter->elem_handle = ((char *) list->data) + + iter->index * list->base.collection.elem_size; + } +} + + +static struct cx_iterator_s cx_arl_iterator( + const struct cx_list_s *list, + size_t index, + bool backwards +) { + struct cx_iterator_s iter; + + iter.index = index; + iter.src_handle.c = list; + iter.elem_handle = cx_arl_at(list, index); + iter.elem_size = list->collection.elem_size; + iter.elem_count = list->collection.size; + iter.base.valid = cx_arl_iter_valid; + iter.base.current = cx_arl_iter_current; + iter.base.next = backwards ? cx_arl_iter_prev : cx_arl_iter_next; + iter.base.remove = false; + iter.base.mutating = false; + + return iter; +} + +static cx_list_class cx_array_list_class = { + cx_arl_destructor, + cx_arl_insert_element, + cx_arl_insert_array, + cx_arl_insert_sorted, + cx_arl_insert_iter, + cx_arl_remove, + cx_arl_clear, + cx_arl_swap, + cx_arl_at, + cx_arl_find_remove, + cx_arl_sort, + cx_arl_compare, + cx_arl_reverse, + cx_arl_iterator, +}; + +CxList *cxArrayListCreate( + const CxAllocator *allocator, + cx_compare_func comparator, + size_t elem_size, + size_t initial_capacity +) { + if (allocator == NULL) { + allocator = cxDefaultAllocator; + } + + cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list)); + if (list == NULL) return NULL; + + list->base.cl = &cx_array_list_class; + list->base.collection.allocator = allocator; + list->capacity = initial_capacity; + + if (elem_size > 0) { + list->base.collection.elem_size = elem_size; + list->base.collection.cmpfunc = comparator; + } else { + elem_size = sizeof(void *); + list->base.collection.cmpfunc = comparator == NULL ? cx_cmp_ptr : comparator; + cxListStorePointers((CxList *) list); + } + + // allocate the array after the real elem_size is known + list->data = cxCalloc(allocator, initial_capacity, elem_size); + if (list->data == NULL) { + cxFree(allocator, list); + return NULL; + } + + // configure the reallocator + list->reallocator.realloc = cx_arl_realloc; + list->reallocator.ptr1 = (void *) allocator; + + return (CxList *) list; +}