ucx/mempool.c

changeset 888
af685cc9d623
parent 852
83fdf679df99
equal deleted inserted replaced
877:b60487c3ec36 888:af685cc9d623
29 #include "cx/mempool.h" 29 #include "cx/mempool.h"
30 30
31 #include <string.h> 31 #include <string.h>
32 #include <errno.h> 32 #include <errno.h>
33 33
34 struct cx_mempool_memory_s { 34 static int cx_mempool_ensure_capacity(
35 /** The destructor. */ 35 struct cx_mempool_s *pool,
36 cx_destructor_func destructor; 36 size_t needed_capacity
37 /** The actual memory. */ 37 ) {
38 char c[]; 38 if (needed_capacity <= pool->capacity) return 0;
39 }; 39 size_t newcap = pool->capacity >= 1000 ?
40 40 pool->capacity + 1000 : pool->capacity * 2;
41 static void *cx_mempool_malloc( 41 size_t newmsize;
42 // LCOV_EXCL_START
43 if (pool->capacity > newcap
44 || cx_szmul(newcap, sizeof(void*), &newmsize)) {
45 errno = EOVERFLOW;
46 return 1;
47 } // LCOV_EXCL_STOP
48 void **newdata = cxRealloc(pool->base_allocator, pool->data, newmsize);
49 if (newdata == NULL) return 1;
50 pool->data = newdata;
51 pool->capacity = newcap;
52 return 0;
53 }
54
55 static int cx_mempool_ensure_registered_capacity(
56 struct cx_mempool_s *pool,
57 size_t needed_capacity
58 ) {
59 if (needed_capacity <= pool->registered_capacity) return 0;
60 // we do not expect so many registrations
61 size_t newcap = pool->registered_capacity + 8;
62 size_t newmsize;
63 // LCOV_EXCL_START
64 if (pool->registered_capacity > newcap || cx_szmul(newcap,
65 sizeof(struct cx_mempool_foreign_memory_s), &newmsize)) {
66 errno = EOVERFLOW;
67 return 1;
68 } // LCOV_EXCL_STOP
69 void *newdata = cxRealloc(pool->base_allocator, pool->registered, newmsize);
70 if (newdata == NULL) return 1;
71 pool->registered = newdata;
72 pool->registered_capacity = newcap;
73 return 0;
74 }
75
76 static void *cx_mempool_malloc_simple(
42 void *p, 77 void *p,
43 size_t n 78 size_t n
44 ) { 79 ) {
45 struct cx_mempool_s *pool = p; 80 struct cx_mempool_s *pool = p;
46 81
47 if (pool->size >= pool->capacity) { 82 if (cx_mempool_ensure_capacity(pool, pool->size + 1)) {
48 size_t newcap = pool->capacity - (pool->capacity % 16) + 16; 83 return NULL; // LCOV_EXCL_LINE
49 size_t newmsize; 84 }
50 if (pool->capacity > newcap || cx_szmul(newcap, 85
51 sizeof(struct cx_mempool_memory_s*), &newmsize)) { 86 struct cx_mempool_memory_s *mem =
52 errno = EOVERFLOW; 87 cxMalloc(pool->base_allocator, sizeof(struct cx_mempool_memory_s) + n);
53 return NULL;
54 }
55 struct cx_mempool_memory_s **newdata = realloc(pool->data, newmsize);
56 if (newdata == NULL) return NULL;
57 pool->data = newdata;
58 pool->capacity = newcap;
59 }
60
61 struct cx_mempool_memory_s *mem = malloc(sizeof(cx_destructor_func) + n);
62 if (mem == NULL) return NULL; 88 if (mem == NULL) return NULL;
63 89 mem->destructor = NULL;
64 mem->destructor = pool->auto_destr;
65 pool->data[pool->size] = mem; 90 pool->data[pool->size] = mem;
66 pool->size++; 91 pool->size++;
67 92
68 return mem->c; 93 return mem->c;
69 } 94 }
70 95
71 static void *cx_mempool_calloc( 96 static void *cx_mempool_calloc_simple(
72 void *p, 97 void *p,
73 size_t nelem, 98 size_t nelem,
74 size_t elsize 99 size_t elsize
75 ) { 100 ) {
76 size_t msz; 101 size_t msz;
77 if (cx_szmul(nelem, elsize, &msz)) { 102 if (cx_szmul(nelem, elsize, &msz)) {
78 errno = EOVERFLOW; 103 errno = EOVERFLOW;
79 return NULL; 104 return NULL;
80 } 105 }
81 void *ptr = cx_mempool_malloc(p, msz); 106 void *ptr = cx_mempool_malloc_simple(p, msz);
82 if (ptr == NULL) return NULL; 107 if (ptr == NULL) return NULL;
83 memset(ptr, 0, nelem * elsize); 108 memset(ptr, 0, nelem * elsize);
84 return ptr; 109 return ptr;
85 } 110 }
86 111
87 static void *cx_mempool_realloc( 112 static void cx_mempool_free_simple(
113 void *p,
114 void *ptr
115 ) {
116 if (!ptr) return;
117 struct cx_mempool_s *pool = p;
118
119 cx_destructor_func destr = pool->destr;
120 cx_destructor_func2 destr2 = pool->destr2;
121
122 struct cx_mempool_memory_s *mem =
123 (void*) ((char *) ptr - sizeof(struct cx_mempool_memory_s));
124
125 for (size_t i = 0; i < pool->size; i++) {
126 if (mem == pool->data[i]) {
127 if (mem->destructor) {
128 mem->destructor(mem->c);
129 }
130 if (destr != NULL) {
131 destr(mem->c);
132 }
133 if (destr2 != NULL) {
134 destr2(pool->destr2_data, mem->c);
135 }
136 cxFree(pool->base_allocator, mem);
137 size_t last_index = pool->size - 1;
138 if (i != last_index) {
139 pool->data[i] = pool->data[last_index];
140 pool->data[last_index] = NULL;
141 }
142 pool->size--;
143 return;
144 }
145 }
146 abort(); // LCOV_EXCL_LINE
147 }
148
149 static void *cx_mempool_realloc_simple(
88 void *p, 150 void *p,
89 void *ptr, 151 void *ptr,
90 size_t n 152 size_t n
91 ) { 153 ) {
92 struct cx_mempool_s *pool = p; 154 if (ptr == NULL) {
93 155 return cx_mempool_malloc_simple(p, n);
94 struct cx_mempool_memory_s *mem, *newm; 156 }
95 mem = (struct cx_mempool_memory_s*)(((char *) ptr) - sizeof(cx_destructor_func)); 157 if (n == 0) {
96 newm = realloc(mem, n + sizeof(cx_destructor_func)); 158 cx_mempool_free_simple(p, ptr);
159 return NULL;
160 }
161 struct cx_mempool_s *pool = p;
162
163 const unsigned overhead = sizeof(struct cx_mempool_memory_s);
164 struct cx_mempool_memory_s *mem =
165 (void *) (((char *) ptr) - overhead);
166 struct cx_mempool_memory_s *newm =
167 cxRealloc(pool->base_allocator, mem, n + overhead);
97 168
98 if (newm == NULL) return NULL; 169 if (newm == NULL) return NULL;
99 if (mem != newm) { 170 if (mem != newm) {
100 for (size_t i = 0; i < pool->size; i++) { 171 for (size_t i = 0; i < pool->size; i++) {
101 if (pool->data[i] == mem) { 172 if (pool->data[i] == mem) {
102 pool->data[i] = newm; 173 pool->data[i] = newm;
103 return ((char*)newm) + sizeof(cx_destructor_func); 174 return ((char*)newm) + overhead;
104 } 175 }
105 } 176 }
106 abort(); // LCOV_EXCL_LINE 177 abort(); // LCOV_EXCL_LINE
107 } else { 178 } else {
108 return ptr; 179 // unfortunately glibc() realloc seems to always move
109 } 180 return ptr; // LCOV_EXCL_LINE
110 } 181 }
111 182 }
112 static void cx_mempool_free( 183
184 static void cx_mempool_free_all_simple(const struct cx_mempool_s *pool) {
185 cx_destructor_func destr = pool->destr;
186 cx_destructor_func2 destr2 = pool->destr2;
187 for (size_t i = 0; i < pool->size; i++) {
188 struct cx_mempool_memory_s *mem = pool->data[i];
189 if (mem->destructor) {
190 mem->destructor(mem->c);
191 }
192 if (destr != NULL) {
193 destr(mem->c);
194 }
195 if (destr2 != NULL) {
196 destr2(pool->destr2_data, mem->c);
197 }
198 cxFree(pool->base_allocator, mem);
199 }
200 }
201
202 static cx_allocator_class cx_mempool_simple_allocator_class = {
203 cx_mempool_malloc_simple,
204 cx_mempool_realloc_simple,
205 cx_mempool_calloc_simple,
206 cx_mempool_free_simple
207 };
208
209 static void *cx_mempool_malloc_advanced(
210 void *p,
211 size_t n
212 ) {
213 struct cx_mempool_s *pool = p;
214
215 if (cx_mempool_ensure_capacity(pool, pool->size + 1)) {
216 return NULL; // LCOV_EXCL_LINE
217 }
218
219 struct cx_mempool_memory2_s *mem =
220 cxMalloc(pool->base_allocator, sizeof(struct cx_mempool_memory2_s) + n);
221 if (mem == NULL) return NULL;
222 mem->destructor = NULL;
223 mem->data = NULL;
224 pool->data[pool->size] = mem;
225 pool->size++;
226
227 return mem->c;
228 }
229
230 static void *cx_mempool_calloc_advanced(
231 void *p,
232 size_t nelem,
233 size_t elsize
234 ) {
235 size_t msz;
236 if (cx_szmul(nelem, elsize, &msz)) {
237 errno = EOVERFLOW;
238 return NULL;
239 }
240 void *ptr = cx_mempool_malloc_advanced(p, msz);
241 if (ptr == NULL) return NULL;
242 memset(ptr, 0, nelem * elsize);
243 return ptr;
244 }
245
246 static void cx_mempool_free_advanced(
113 void *p, 247 void *p,
114 void *ptr 248 void *ptr
115 ) { 249 ) {
116 if (!ptr) return; 250 if (!ptr) return;
117 struct cx_mempool_s *pool = p; 251 struct cx_mempool_s *pool = p;
118 252
119 struct cx_mempool_memory_s *mem = (struct cx_mempool_memory_s *) 253 cx_destructor_func destr = pool->destr;
120 ((char *) ptr - sizeof(cx_destructor_func)); 254 cx_destructor_func2 destr2 = pool->destr2;
255
256 struct cx_mempool_memory2_s *mem =
257 (void*) ((char *) ptr - sizeof(struct cx_mempool_memory2_s));
121 258
122 for (size_t i = 0; i < pool->size; i++) { 259 for (size_t i = 0; i < pool->size; i++) {
123 if (mem == pool->data[i]) { 260 if (mem == pool->data[i]) {
124 if (mem->destructor) { 261 if (mem->destructor) {
125 mem->destructor(mem->c); 262 mem->destructor(mem->data, mem->c);
126 } 263 }
127 free(mem); 264 if (destr != NULL) {
265 destr(mem->c);
266 }
267 if (destr2 != NULL) {
268 destr2(pool->destr2_data, mem->c);
269 }
270 cxFree(pool->base_allocator, mem);
128 size_t last_index = pool->size - 1; 271 size_t last_index = pool->size - 1;
129 if (i != last_index) { 272 if (i != last_index) {
130 pool->data[i] = pool->data[last_index]; 273 pool->data[i] = pool->data[last_index];
131 pool->data[last_index] = NULL; 274 pool->data[last_index] = NULL;
132 } 275 }
135 } 278 }
136 } 279 }
137 abort(); // LCOV_EXCL_LINE 280 abort(); // LCOV_EXCL_LINE
138 } 281 }
139 282
283 static void *cx_mempool_realloc_advanced(
284 void *p,
285 void *ptr,
286 size_t n
287 ) {
288 if (ptr == NULL) {
289 return cx_mempool_malloc_advanced(p, n);
290 }
291 if (n == 0) {
292 cx_mempool_free_advanced(p, ptr);
293 return NULL;
294 }
295 struct cx_mempool_s *pool = p;
296
297 const unsigned overhead = sizeof(struct cx_mempool_memory2_s);
298 struct cx_mempool_memory2_s *mem =
299 (void *) (((char *) ptr) - overhead);
300 struct cx_mempool_memory2_s *newm =
301 cxRealloc(pool->base_allocator, mem, n + overhead);
302
303 if (newm == NULL) return NULL;
304 if (mem != newm) {
305 for (size_t i = 0; i < pool->size; i++) {
306 if (pool->data[i] == mem) {
307 pool->data[i] = newm;
308 return ((char*)newm) + overhead;
309 }
310 }
311 abort(); // LCOV_EXCL_LINE
312 } else {
313 // unfortunately glibc() realloc seems to always move
314 return ptr; // LCOV_EXCL_LINE
315 }
316 }
317
318 static void cx_mempool_free_all_advanced(const struct cx_mempool_s *pool) {
319 cx_destructor_func destr = pool->destr;
320 cx_destructor_func2 destr2 = pool->destr2;
321 for (size_t i = 0; i < pool->size; i++) {
322 struct cx_mempool_memory2_s *mem = pool->data[i];
323 if (mem->destructor) {
324 mem->destructor(mem->data, mem->c);
325 }
326 if (destr != NULL) {
327 destr(mem->c);
328 }
329 if (destr2 != NULL) {
330 destr2(pool->destr2_data, mem->c);
331 }
332 cxFree(pool->base_allocator, mem);
333 }
334 }
335
336 static cx_allocator_class cx_mempool_advanced_allocator_class = {
337 cx_mempool_malloc_advanced,
338 cx_mempool_realloc_advanced,
339 cx_mempool_calloc_advanced,
340 cx_mempool_free_advanced
341 };
342
343
344 static void *cx_mempool_malloc_pure(
345 void *p,
346 size_t n
347 ) {
348 struct cx_mempool_s *pool = p;
349
350 if (cx_mempool_ensure_capacity(pool, pool->size + 1)) {
351 return NULL; // LCOV_EXCL_LINE
352 }
353
354 void *mem = cxMalloc(pool->base_allocator, n);
355 if (mem == NULL) return NULL;
356 pool->data[pool->size] = mem;
357 pool->size++;
358
359 return mem;
360 }
361
362 static void *cx_mempool_calloc_pure(
363 void *p,
364 size_t nelem,
365 size_t elsize
366 ) {
367 size_t msz;
368 if (cx_szmul(nelem, elsize, &msz)) {
369 errno = EOVERFLOW;
370 return NULL;
371 }
372 void *ptr = cx_mempool_malloc_pure(p, msz);
373 if (ptr == NULL) return NULL;
374 memset(ptr, 0, nelem * elsize);
375 return ptr;
376 }
377
378 static void cx_mempool_free_pure(
379 void *p,
380 void *ptr
381 ) {
382 if (!ptr) return;
383 struct cx_mempool_s *pool = p;
384
385 cx_destructor_func destr = pool->destr;
386 cx_destructor_func2 destr2 = pool->destr2;
387
388 for (size_t i = 0; i < pool->size; i++) {
389 if (ptr == pool->data[i]) {
390 if (destr != NULL) {
391 destr(ptr);
392 }
393 if (destr2 != NULL) {
394 destr2(pool->destr2_data, ptr);
395 }
396 cxFree(pool->base_allocator, ptr);
397 size_t last_index = pool->size - 1;
398 if (i != last_index) {
399 pool->data[i] = pool->data[last_index];
400 pool->data[last_index] = NULL;
401 }
402 pool->size--;
403 return;
404 }
405 }
406 abort(); // LCOV_EXCL_LINE
407 }
408
409 static void *cx_mempool_realloc_pure(
410 void *p,
411 void *ptr,
412 size_t n
413 ) {
414 if (ptr == NULL) {
415 return cx_mempool_malloc_pure(p, n);
416 }
417 if (n == 0) {
418 cx_mempool_free_pure(p, ptr);
419 return NULL;
420 }
421 struct cx_mempool_s *pool = p;
422 void *newm = cxRealloc(pool->base_allocator, ptr, n);
423 if (newm == NULL) return NULL;
424 if (ptr != newm) {
425 for (size_t i = 0; i < pool->size; i++) {
426 if (pool->data[i] == ptr) {
427 pool->data[i] = newm;
428 return newm;
429 }
430 }
431 abort(); // LCOV_EXCL_LINE
432 } else {
433 // unfortunately glibc() realloc seems to always move
434 return ptr; // LCOV_EXCL_LINE
435 }
436 }
437
438 static void cx_mempool_free_all_pure(const struct cx_mempool_s *pool) {
439 cx_destructor_func destr = pool->destr;
440 cx_destructor_func2 destr2 = pool->destr2;
441 for (size_t i = 0; i < pool->size; i++) {
442 void *mem = pool->data[i];
443 if (destr != NULL) {
444 destr(mem);
445 }
446 if (destr2 != NULL) {
447 destr2(pool->destr2_data, mem);
448 }
449 cxFree(pool->base_allocator, mem);
450 }
451 }
452
453 static cx_allocator_class cx_mempool_pure_allocator_class = {
454 cx_mempool_malloc_pure,
455 cx_mempool_realloc_pure,
456 cx_mempool_calloc_pure,
457 cx_mempool_free_pure
458 };
459
460 static void cx_mempool_free_foreign(const struct cx_mempool_s *pool) {
461 for (size_t i = 0; i < pool->registered_size; i++) {
462 struct cx_mempool_foreign_memory_s info = pool->registered[i];
463 if (info.destr2_data == NULL) {
464 if (info.destr) {
465 info.destr(info.mem);
466 }
467 } else {
468 info.destr2(info.destr2_data, info.mem);
469 }
470 }
471 }
472
140 void cxMempoolFree(CxMempool *pool) { 473 void cxMempoolFree(CxMempool *pool) {
141 if (pool == NULL) return; 474 if (pool == NULL) return;
142 struct cx_mempool_memory_s *mem; 475 if (pool->allocator->cl == &cx_mempool_simple_allocator_class) {
143 for (size_t i = 0; i < pool->size; i++) { 476 cx_mempool_free_all_simple(pool);
144 mem = pool->data[i]; 477 } else if (pool->allocator->cl == &cx_mempool_advanced_allocator_class) {
145 if (mem->destructor) { 478 cx_mempool_free_all_advanced(pool);
146 mem->destructor(mem->c); 479 } else {
147 } 480 cx_mempool_free_all_pure(pool);
148 free(mem); 481 }
149 } 482 cx_mempool_free_foreign(pool);
150 free(pool->data); 483 cxFree(pool->base_allocator, pool->data);
151 free((void*) pool->allocator); 484 cxFree(pool->base_allocator, pool->registered);
152 free(pool); 485 cxFree(pool->base_allocator, (void*) pool->allocator);
486 cxFree(pool->base_allocator, pool);
153 } 487 }
154 488
155 void cxMempoolSetDestructor( 489 void cxMempoolSetDestructor(
156 void *ptr, 490 void *ptr,
157 cx_destructor_func func 491 cx_destructor_func func
158 ) { 492 ) {
159 *(cx_destructor_func *) ((char *) ptr - sizeof(cx_destructor_func)) = func; 493 *(cx_destructor_func *) ((char *) ptr - sizeof(cx_destructor_func)) = func;
160 } 494 }
161 495
496 void cxMempoolSetDestructor2(
497 void *ptr,
498 cx_destructor_func2 func,
499 void *data
500 ) {
501 struct cx_mempool_memory2_s *info =
502 (void*)((char *) ptr - sizeof(struct cx_mempool_memory2_s));
503 info->destructor = func;
504 info->data = data;
505 }
506
162 void cxMempoolRemoveDestructor(void *ptr) { 507 void cxMempoolRemoveDestructor(void *ptr) {
163 *(cx_destructor_func *) ((char *) ptr - sizeof(cx_destructor_func)) = NULL; 508 *(cx_destructor_func *) ((char *) ptr - sizeof(cx_destructor_func)) = NULL;
164 } 509 }
165 510
166 struct cx_mempool_foreign_mem_s { 511 void cxMempoolRemoveDestructor2(void *ptr) {
167 cx_destructor_func destr; 512 struct cx_mempool_memory2_s *info =
168 void* mem; 513 (void*)((char *) ptr - sizeof(struct cx_mempool_memory2_s));
169 }; 514 info->destructor = NULL;
170 515 info->data = NULL;
171 static void cx_mempool_destr_foreign_mem(void* ptr) {
172 struct cx_mempool_foreign_mem_s *fm = ptr;
173 fm->destr(fm->mem);
174 } 516 }
175 517
176 int cxMempoolRegister( 518 int cxMempoolRegister(
177 CxMempool *pool, 519 CxMempool *pool,
178 void *memory, 520 void *memory,
179 cx_destructor_func destr 521 cx_destructor_func destr
180 ) { 522 ) {
181 struct cx_mempool_foreign_mem_s *fm = cx_mempool_malloc( 523 if (cx_mempool_ensure_registered_capacity(pool, pool->registered_size + 1)) {
182 pool, 524 return 1; // LCOV_EXCL_LINE
183 sizeof(struct cx_mempool_foreign_mem_s) 525 }
184 ); 526
185 if (fm == NULL) return 1; 527 pool->registered[pool->registered_size++] =
186 528 (struct cx_mempool_foreign_memory_s) {
187 fm->mem = memory; 529 .mem = memory,
188 fm->destr = destr; 530 .destr = destr,
189 *(cx_destructor_func *) ((char *) fm - sizeof(cx_destructor_func)) = cx_mempool_destr_foreign_mem; 531 .destr2_data = NULL
532 };
190 533
191 return 0; 534 return 0;
192 } 535 }
193 536
194 static cx_allocator_class cx_mempool_allocator_class = { 537 int cxMempoolRegister2(
195 cx_mempool_malloc, 538 CxMempool *pool,
196 cx_mempool_realloc, 539 void *memory,
197 cx_mempool_calloc, 540 cx_destructor_func2 destr,
198 cx_mempool_free 541 void *data
199 }; 542 ) {
543 if (cx_mempool_ensure_registered_capacity(pool, pool->registered_size + 1)) {
544 return 1; // LCOV_EXCL_LINE
545 }
546
547 pool->registered[pool->registered_size++] =
548 (struct cx_mempool_foreign_memory_s) {
549 .mem = memory,
550 .destr2 = destr,
551 .destr2_data = data
552 };
553
554 return 0;
555 }
200 556
201 CxMempool *cxMempoolCreate( 557 CxMempool *cxMempoolCreate(
202 size_t capacity, 558 size_t capacity,
203 cx_destructor_func destr 559 enum cx_mempool_type type
204 ) { 560 ) {
561 if (capacity == 0) capacity = 16;
205 size_t poolsize; 562 size_t poolsize;
206 if (cx_szmul(capacity, sizeof(struct cx_mempool_memory_s*), &poolsize)) { 563 if (cx_szmul(capacity, sizeof(void*), &poolsize)) {
564 // LCOV_EXCL_START
207 errno = EOVERFLOW; 565 errno = EOVERFLOW;
208 return NULL; 566 return NULL;
209 } 567 } // LCOV_EXCL_STOP
210 568
211 struct cx_mempool_s *pool = 569 CxAllocator *provided_allocator = cxMallocDefault(sizeof(CxAllocator));
212 malloc(sizeof(struct cx_mempool_s));
213 if (pool == NULL) return NULL;
214
215 CxAllocator *provided_allocator = malloc(sizeof(CxAllocator));
216 if (provided_allocator == NULL) { // LCOV_EXCL_START 570 if (provided_allocator == NULL) { // LCOV_EXCL_START
217 free(pool);
218 return NULL; 571 return NULL;
219 } // LCOV_EXCL_STOP 572 } // LCOV_EXCL_STOP
220 provided_allocator->cl = &cx_mempool_allocator_class; 573
574 CxMempool *pool = cxCallocDefault(1, sizeof(CxMempool));
575 if (pool == NULL) { // LCOV_EXCL_START
576 cxFreeDefault(provided_allocator);
577 return NULL;
578 } // LCOV_EXCL_STOP
579
221 provided_allocator->data = pool; 580 provided_allocator->data = pool;
222 581 *((const CxAllocator**)&pool->base_allocator) = cxDefaultAllocator;
223 pool->allocator = provided_allocator; 582 pool->allocator = provided_allocator;
224 583 if (type == CX_MEMPOOL_TYPE_SIMPLE) {
225 pool->data = malloc(poolsize); 584 provided_allocator->cl = &cx_mempool_simple_allocator_class;
585 } else if (type == CX_MEMPOOL_TYPE_ADVANCED) {
586 provided_allocator->cl = &cx_mempool_advanced_allocator_class;
587 } else {
588 provided_allocator->cl = &cx_mempool_pure_allocator_class;
589 }
590
591 pool->data = cxMallocDefault(poolsize);
226 if (pool->data == NULL) { // LCOV_EXCL_START 592 if (pool->data == NULL) { // LCOV_EXCL_START
227 free(provided_allocator); 593 cxFreeDefault(provided_allocator);
228 free(pool); 594 cxFreeDefault(pool);
229 return NULL; 595 return NULL;
230 } // LCOV_EXCL_STOP 596 } // LCOV_EXCL_STOP
231 597
232 pool->size = 0; 598 pool->size = 0;
233 pool->capacity = capacity; 599 pool->capacity = capacity;
234 pool->auto_destr = destr;
235 600
236 return pool; 601 return pool;
237 } 602 }
603
604 void cxMempoolGlobalDestructor(CxMempool *pool, cx_destructor_func fnc) {
605 pool->destr = fnc;
606 }
607
608 void cxMempoolGlobalDestructor2(CxMempool *pool, cx_destructor_func2 fnc, void *data) {
609 pool->destr2 = fnc;
610 pool->destr2_data = data;
611 }
612
613 static void cx_mempool_free_transferred_allocator(void *base_al, void *al) {
614 cxFree(base_al, al);
615 }
616
617 int cxMempoolTransfer(
618 CxMempool *source,
619 CxMempool *dest
620 ) {
621 // safety checks
622 if (source == dest) return 1;
623 if (source->allocator->cl != dest->allocator->cl) return 1;
624 if (source->base_allocator->cl != dest->base_allocator->cl) return 1;
625
626 // ensure enough capacity in the destination pool
627 if (cx_mempool_ensure_capacity(dest, dest->size + source->size)) {
628 return 1; // LCOV_EXCL_LINE
629 }
630 if (cx_mempool_ensure_registered_capacity(dest,
631 dest->registered_size + source->registered_size)) {
632 return 1; // LCOV_EXCL_LINE
633 }
634
635 // allocate a replacement allocator for the source pool
636 CxAllocator *new_source_allocator =
637 cxMalloc(source->base_allocator, sizeof(CxAllocator));
638 if (new_source_allocator == NULL) { // LCOV_EXCL_START
639 return 1;
640 } // LCOV_EXCL_STOP
641 new_source_allocator->cl = source->allocator->cl;
642 new_source_allocator->data = source;
643
644 // transfer all the data
645 if (source->size > 0) {
646 memcpy(&dest->data[dest->size], source->data,
647 sizeof(void*)*source->size);
648 dest->size += source->size;
649 }
650
651 // transfer all registered memory
652 if (source->registered_size > 0) {
653 memcpy(&dest->registered[dest->registered_size], source->registered,
654 sizeof(struct cx_mempool_foreign_memory_s)
655 * source->registered_size);
656 dest->registered_size += source->registered_size;
657 }
658
659 // register the old allocator with the new pool
660 // we have to remove const-ness for this, but that's okay here
661 // also register the base allocator, s.t. the pool knows how to free it
662 CxAllocator *transferred_allocator = (CxAllocator*) source->allocator;
663 transferred_allocator->data = dest;
664 cxMempoolRegister2(dest, transferred_allocator,
665 cx_mempool_free_transferred_allocator, (void*)source->base_allocator);
666
667 // prepare the source pool for re-use
668 source->allocator = new_source_allocator;
669 memset(source->data, 0, source->size * sizeof(void*));
670 memset(source->registered, 0,
671 source->registered_size * sizeof(struct cx_mempool_foreign_memory_s));
672 source->size = 0;
673 source->registered_size = 0;
674
675 return 0;
676 }
677
678 int cxMempoolTransferObject(
679 CxMempool *source,
680 CxMempool *dest,
681 const void *obj
682 ) {
683 // safety checks
684 if (source == dest) return 1;
685 if (source->allocator->cl != dest->allocator->cl) return 1;
686 if (source->base_allocator->cl != dest->base_allocator->cl) return 1;
687
688 // search for the object
689 for (size_t i = 0; i < source->size; i++) {
690 struct cx_mempool_memory_s *mem = source->data[i];
691 if (mem->c == obj) {
692 // first, make sure that the dest pool can take the object
693 if (cx_mempool_ensure_capacity(dest, dest->size + 1)) {
694 return 1; // LCOV_EXCL_LINE
695 }
696 // remove from the source pool
697 size_t last_index = source->size - 1;
698 if (i != last_index) {
699 source->data[i] = source->data[last_index];
700 source->data[last_index] = NULL;
701 }
702 source->size--;
703 // add to the target pool
704 dest->data[dest->size++] = mem;
705 return 0;
706 }
707 }
708 // search in the registered objects
709 for (size_t i = 0; i < source->registered_size; i++) {
710 struct cx_mempool_foreign_memory_s *mem = &source->registered[i];
711 if (mem->mem == obj) {
712 // first, make sure that the dest pool can take the object
713 if (cx_mempool_ensure_registered_capacity(dest,
714 dest->registered_size + 1)) {
715 return 1; // LCOV_EXCL_LINE
716 }
717 dest->registered[dest->registered_size++] = *mem;
718 // remove from the source pool
719 size_t last_index = source->registered_size - 1;
720 if (i != last_index) {
721 source->registered[i] = source->registered[last_index];
722 memset(&source->registered[last_index], 0,
723 sizeof(struct cx_mempool_foreign_memory_s));
724 }
725 source->registered_size--;
726 return 0;
727 }
728 }
729 // not found
730 return 1;
731 }

mercurial