ucx/array_list.c

changeset 852
83fdf679df99
parent 816
839fefbdedc7
--- a/ucx/array_list.c	Thu Nov 28 17:53:13 2024 +0100
+++ b/ucx/array_list.c	Mon Jan 06 21:18:36 2025 +0100
@@ -30,6 +30,7 @@
 #include "cx/compare.h"
 #include <assert.h>
 #include <string.h>
+#include <errno.h>
 
 // Default array reallocator
 
@@ -37,65 +38,258 @@
         void *array,
         size_t capacity,
         size_t elem_size,
-        __attribute__((__unused__)) struct cx_array_reallocator_s *alloc
+        cx_attr_unused CxArrayReallocator *alloc
 ) {
-    return realloc(array, capacity * elem_size);
+    size_t n;
+    if (cx_szmul(capacity, elem_size, &n)) {
+        errno = EOVERFLOW;
+        return NULL;
+    }
+    return realloc(array, n);
 }
 
-struct cx_array_reallocator_s cx_array_default_reallocator_impl = {
+CxArrayReallocator cx_array_default_reallocator_impl = {
         cx_array_default_realloc, NULL, NULL, 0, 0
 };
 
-struct cx_array_reallocator_s *cx_array_default_reallocator = &cx_array_default_reallocator_impl;
+CxArrayReallocator *cx_array_default_reallocator = &cx_array_default_reallocator_impl;
+
+// Stack-aware array reallocator
+
+static void *cx_array_advanced_realloc(
+        void *array,
+        size_t capacity,
+        size_t elem_size,
+        cx_attr_unused CxArrayReallocator *alloc
+) {
+    // check for overflow
+    size_t n;
+    if (cx_szmul(capacity, elem_size, &n)) {
+        errno = EOVERFLOW;
+        return NULL;
+    }
+
+    // retrieve the pointer to the actual allocator
+    const CxAllocator *al = alloc->ptr1;
+
+    // check if the array is still located on the stack
+    void *newmem;
+    if (array == alloc->ptr2) {
+        newmem = cxMalloc(al, n);
+        if (newmem != NULL && array != NULL) {
+            memcpy(newmem, array, n);
+        }
+    } else {
+        newmem = cxRealloc(al, array, n);
+    }
+    return newmem;
+}
+
+struct cx_array_reallocator_s cx_array_reallocator(
+        const struct cx_allocator_s *allocator,
+        const void *stackmem
+) {
+    if (allocator == NULL) {
+        allocator = cxDefaultAllocator;
+    }
+    return (struct cx_array_reallocator_s) {
+            cx_array_advanced_realloc,
+            (void*) allocator, (void*) stackmem,
+            0, 0
+    };
+}
 
 // LOW LEVEL ARRAY LIST FUNCTIONS
 
-enum cx_array_result cx_array_copy(
-        void **target,
-        size_t *size,
-        size_t *capacity,
-        size_t index,
-        void const *src,
+static size_t cx_array_align_capacity(
+        size_t cap,
+        size_t alignment,
+        size_t max
+) {
+    if (cap > max - alignment) {
+        return cap;
+    } else {
+        return cap - (cap % alignment) + alignment;
+    }
+}
+
+int cx_array_reserve(
+        void **array,
+        void *size,
+        void *capacity,
+        unsigned width,
         size_t elem_size,
         size_t elem_count,
-        struct cx_array_reallocator_s *reallocator
+        CxArrayReallocator *reallocator
+) {
+    // assert pointers
+    assert(array != NULL);
+    assert(size != NULL);
+    assert(capacity != NULL);
+
+    // default reallocator
+    if (reallocator == NULL) {
+        reallocator = cx_array_default_reallocator;
+    }
+
+    // determine size and capacity
+    size_t oldcap;
+    size_t oldsize;
+    size_t max_size;
+    if (width == 0 || width == sizeof(size_t)) {
+        oldcap = *(size_t*) capacity;
+        oldsize = *(size_t*) size;
+        max_size = SIZE_MAX;
+    } else if (width == sizeof(uint16_t)) {
+        oldcap = *(uint16_t*) capacity;
+        oldsize = *(uint16_t*) size;
+        max_size = UINT16_MAX;
+    } else if (width == sizeof(uint8_t)) {
+        oldcap = *(uint8_t*) capacity;
+        oldsize = *(uint8_t*) size;
+        max_size = UINT8_MAX;
+    }
+#if CX_WORDSIZE == 64
+    else if (width == sizeof(uint32_t)) {
+        oldcap = *(uint32_t*) capacity;
+        oldsize = *(uint32_t*) size;
+        max_size = UINT32_MAX;
+    }
+#endif
+    else {
+        errno = EINVAL;
+        return 1;
+    }
+
+    // assert that the array is allocated when it has capacity
+    assert(*array != NULL || oldcap == 0);
+
+    // check for overflow
+    if (elem_count > max_size - oldsize) {
+        errno = EOVERFLOW;
+        return 1;
+    }
+
+    // determine new capacity
+    size_t newcap = oldsize + elem_count;
+
+    // reallocate if possible
+    if (newcap > oldcap) {
+        // calculate new capacity (next number divisible by 16)
+        newcap = cx_array_align_capacity(newcap, 16, max_size);
+
+        // perform reallocation
+        void *newmem = reallocator->realloc(
+                *array, newcap, elem_size, reallocator
+        );
+        if (newmem == NULL) {
+            return 1; // LCOV_EXCL_LINE
+        }
+
+        // store new pointer
+        *array = newmem;
+
+        // store new capacity
+        if (width == 0 || width == sizeof(size_t)) {
+            *(size_t*) capacity = newcap;
+        } else if (width == sizeof(uint16_t)) {
+            *(uint16_t*) capacity = (uint16_t) newcap;
+        } else if (width == sizeof(uint8_t)) {
+            *(uint8_t*) capacity = (uint8_t) newcap;
+        }
+#if CX_WORDSIZE == 64
+        else if (width == sizeof(uint32_t)) {
+            *(uint32_t*) capacity = (uint32_t) newcap;
+        }
+#endif
+    }
+
+    return 0;
+}
+
+int cx_array_copy(
+        void **target,
+        void *size,
+        void *capacity,
+        unsigned width,
+        size_t index,
+        const void *src,
+        size_t elem_size,
+        size_t elem_count,
+        CxArrayReallocator *reallocator
 ) {
     // assert pointers
     assert(target != NULL);
     assert(size != NULL);
+    assert(capacity != NULL);
     assert(src != NULL);
 
-    // determine capacity
-    size_t cap = capacity == NULL ? *size : *capacity;
+    // default reallocator
+    if (reallocator == NULL) {
+        reallocator = cx_array_default_reallocator;
+    }
+
+    // determine size and capacity
+    size_t oldcap;
+    size_t oldsize;
+    size_t max_size;
+    if (width == 0 || width == sizeof(size_t)) {
+        oldcap = *(size_t*) capacity;
+        oldsize = *(size_t*) size;
+        max_size = SIZE_MAX;
+    } else if (width == sizeof(uint16_t)) {
+        oldcap = *(uint16_t*) capacity;
+        oldsize = *(uint16_t*) size;
+        max_size = UINT16_MAX;
+    } else if (width == sizeof(uint8_t)) {
+        oldcap = *(uint8_t*) capacity;
+        oldsize = *(uint8_t*) size;
+        max_size = UINT8_MAX;
+    }
+#if CX_WORDSIZE == 64
+    else if (width == sizeof(uint32_t)) {
+        oldcap = *(uint32_t*) capacity;
+        oldsize = *(uint32_t*) size;
+        max_size = UINT32_MAX;
+    }
+#endif
+    else {
+        errno = EINVAL;
+        return 1;
+    }
+
+    // assert that the array is allocated when it has capacity
+    assert(*target != NULL || oldcap == 0);
+
+    // check for overflow
+    if (index > max_size || elem_count > max_size - index) {
+        errno = EOVERFLOW;
+        return 1;
+    }
 
     // check if resize is required
     size_t minsize = index + elem_count;
-    size_t newsize = *size < minsize ? minsize : *size;
-    bool needrealloc = newsize > cap;
+    size_t newsize = oldsize < minsize ? minsize : oldsize;
 
     // reallocate if possible
-    if (needrealloc) {
-        // a reallocator and a capacity variable must be available
-        if (reallocator == NULL || capacity == NULL) {
-            return CX_ARRAY_REALLOC_NOT_SUPPORTED;
-        }
-
+    size_t newcap = oldcap;
+    if (newsize > oldcap) {
         // check, if we need to repair the src pointer
         uintptr_t targetaddr = (uintptr_t) *target;
         uintptr_t srcaddr = (uintptr_t) src;
         bool repairsrc = targetaddr <= srcaddr
-                         && srcaddr < targetaddr + cap * elem_size;
+                         && srcaddr < targetaddr + oldcap * elem_size;
 
         // calculate new capacity (next number divisible by 16)
-        cap = newsize - (newsize % 16) + 16;
-        assert(cap > newsize);
+        newcap = cx_array_align_capacity(newsize, 16, max_size);
+        assert(newcap > newsize);
 
         // perform reallocation
         void *newmem = reallocator->realloc(
-                *target, cap, elem_size, reallocator
+                *target, newcap, elem_size, reallocator
         );
         if (newmem == NULL) {
-            return CX_ARRAY_REALLOC_FAILED;
+            return 1;
         }
 
         // repair src pointer, if necessary
@@ -103,9 +297,8 @@
             src = ((char *) newmem) + (srcaddr - targetaddr);
         }
 
-        // store new pointer and capacity
+        // store new pointer
         *target = newmem;
-        *capacity = cap;
     }
 
     // determine target pointer
@@ -113,17 +306,255 @@
     start += index * elem_size;
 
     // copy elements and set new size
+    // note: no overflow check here, b/c we cannot get here w/o allocation
     memmove(start, src, elem_count * elem_size);
-    *size = newsize;
+
+    // if any of size or capacity changed, store them back
+    if (newsize != oldsize || newcap != oldcap) {
+        if (width == 0 || width == sizeof(size_t)) {
+            *(size_t*) capacity = newcap;
+            *(size_t*) size = newsize;
+        } else if (width == sizeof(uint16_t)) {
+            *(uint16_t*) capacity = (uint16_t) newcap;
+            *(uint16_t*) size = (uint16_t) newsize;
+        } else if (width == sizeof(uint8_t)) {
+            *(uint8_t*) capacity = (uint8_t) newcap;
+            *(uint8_t*) size = (uint8_t) newsize;
+        }
+#if CX_WORDSIZE == 64
+        else if (width == sizeof(uint32_t)) {
+            *(uint32_t*) capacity = (uint32_t) newcap;
+            *(uint32_t*) size = (uint32_t) newsize;
+        }
+#endif
+    }
 
     // return successfully
-    return CX_ARRAY_SUCCESS;
+    return 0;
+}
+
+int cx_array_insert_sorted(
+        void **target,
+        size_t *size,
+        size_t *capacity,
+        cx_compare_func cmp_func,
+        const void *sorted_data,
+        size_t elem_size,
+        size_t elem_count,
+        CxArrayReallocator *reallocator
+) {
+    // assert pointers
+    assert(target != NULL);
+    assert(size != NULL);
+    assert(capacity != NULL);
+    assert(cmp_func != NULL);
+    assert(sorted_data != NULL);
+
+    // default reallocator
+    if (reallocator == NULL) {
+        reallocator = cx_array_default_reallocator;
+    }
+
+    // corner case
+    if (elem_count == 0) return 0;
+
+    // overflow check
+    if (elem_count > SIZE_MAX - *size) {
+        errno = EOVERFLOW;
+        return 1;
+    }
+
+    // store some counts
+    size_t old_size = *size;
+    size_t needed_capacity = old_size + elem_count;
+
+    // if we need more than we have, try a reallocation
+    if (needed_capacity > *capacity) {
+        size_t new_capacity = cx_array_align_capacity(needed_capacity, 16, SIZE_MAX);
+        void *new_mem = reallocator->realloc(
+                *target, new_capacity, elem_size, reallocator
+        );
+        if (new_mem == NULL) {
+            // give it up right away, there is no contract
+            // that requires us to insert as much as we can
+            return 1;  // LCOV_EXCL_LINE
+        }
+        *target = new_mem;
+        *capacity = new_capacity;
+    }
+
+    // now we have guaranteed that we can insert everything
+    size_t new_size = old_size + elem_count;
+    *size = new_size;
+
+    // declare the source and destination indices/pointers
+    size_t si = 0, di = 0;
+    const char *src = sorted_data;
+    char *dest = *target;
+
+    // find the first insertion point
+    di = cx_array_binary_search_sup(dest, old_size, elem_size, src, cmp_func);
+    dest += di * elem_size;
+
+    // move the remaining elements in the array completely to the right
+    // we will call it the "buffer" for parked elements
+    size_t buf_size = old_size - di;
+    size_t bi = new_size - buf_size;
+    char *bptr = ((char *) *target) + bi * elem_size;
+    memmove(bptr, dest, buf_size * elem_size);
+
+    // while there are both source and buffered elements left,
+    // copy them interleaving
+    while (si < elem_count && bi < new_size) {
+        // determine how many source elements can be inserted
+        size_t copy_len, bytes_copied;
+        copy_len = cx_array_binary_search_sup(
+                src,
+                elem_count - si,
+                elem_size,
+                bptr,
+                cmp_func
+        );
+
+        // copy the source elements
+        bytes_copied = copy_len * elem_size;
+        memcpy(dest, src, bytes_copied);
+        dest += bytes_copied;
+        src += bytes_copied;
+        si += copy_len;
+
+        // when all source elements are in place, we are done
+        if (si >= elem_count) break;
+
+        // determine how many buffered elements need to be restored
+        copy_len = cx_array_binary_search_sup(
+                bptr,
+                new_size - bi,
+                elem_size,
+                src,
+                cmp_func
+        );
+
+        // restore the buffered elements
+        bytes_copied = copy_len * elem_size;
+        memmove(dest, bptr, bytes_copied);
+        dest += bytes_copied;
+        bptr += bytes_copied;
+        bi += copy_len;
+    }
+
+    // still source elements left? simply append them
+    if (si < elem_count) {
+        memcpy(dest, src, elem_size * (elem_count - si));
+    }
+
+    // still buffer elements left?
+    // don't worry, we already moved them to the correct place
+
+    return 0;
+}
+
+size_t cx_array_binary_search_inf(
+        const void *arr,
+        size_t size,
+        size_t elem_size,
+        const void *elem,
+        cx_compare_func cmp_func
+) {
+    // special case: empty array
+    if (size == 0) return 0;
+
+    // declare a variable that will contain the compare results
+    int result;
+
+    // cast the array pointer to something we can use offsets with
+    const char *array = arr;
+
+    // check the first array element
+    result = cmp_func(elem, array);
+    if (result < 0) {
+        return size;
+    } else if (result == 0) {
+        return 0;
+    }
+
+    // special case: there is only one element and that is smaller
+    if (size == 1) return 0;
+
+    // check the last array element
+    result = cmp_func(elem, array + elem_size * (size - 1));
+    if (result >= 0) {
+        return size - 1;
+    }
+
+    // the element is now guaranteed to be somewhere in the list
+    // so start the binary search
+    size_t left_index = 1;
+    size_t right_index = size - 1;
+    size_t pivot_index;
+
+    while (left_index <= right_index) {
+        pivot_index = left_index + (right_index - left_index) / 2;
+        const char *arr_elem = array + pivot_index * elem_size;
+        result = cmp_func(elem, arr_elem);
+        if (result == 0) {
+            // found it!
+            return pivot_index;
+        } else if (result < 0) {
+            // element is smaller than pivot, continue search left
+            right_index = pivot_index - 1;
+        } else {
+            // element is larger than pivot, continue search right
+            left_index = pivot_index + 1;
+        }
+    }
+
+    // report the largest upper bound
+    return result < 0 ? (pivot_index - 1) : pivot_index;
+}
+
+size_t cx_array_binary_search(
+        const void *arr,
+        size_t size,
+        size_t elem_size,
+        const void *elem,
+        cx_compare_func cmp_func
+) {
+    size_t index = cx_array_binary_search_inf(
+            arr, size, elem_size, elem, cmp_func
+    );
+    if (index < size &&
+            cmp_func(((const char *) arr) + index * elem_size, elem) == 0) {
+        return index;
+    } else {
+        return size;
+    }
+}
+
+size_t cx_array_binary_search_sup(
+        const void *arr,
+        size_t size,
+        size_t elem_size,
+        const void *elem,
+        cx_compare_func cmp_func
+) {
+    size_t inf = cx_array_binary_search_inf(
+            arr, size, elem_size, elem, cmp_func
+    );
+    if (inf == size) {
+        // no infimum means, first element is supremum
+        return 0;
+    } else if (cmp_func(((const char *) arr) + inf * elem_size, elem) == 0) {
+        return inf;
+    } else {
+        return inf + 1;
+    }
 }
 
 #ifndef CX_ARRAY_SWAP_SBO_SIZE
 #define CX_ARRAY_SWAP_SBO_SIZE 128
 #endif
-unsigned cx_array_swap_sbo_size = CX_ARRAY_SWAP_SBO_SIZE;
+const unsigned cx_array_swap_sbo_size = CX_ARRAY_SWAP_SBO_SIZE;
 
 void cx_array_swap(
         void *arr,
@@ -170,22 +601,9 @@
     struct cx_list_s base;
     void *data;
     size_t capacity;
-    struct cx_array_reallocator_s reallocator;
+    CxArrayReallocator reallocator;
 } cx_array_list;
 
-static void *cx_arl_realloc(
-        void *array,
-        size_t capacity,
-        size_t elem_size,
-        struct cx_array_reallocator_s *alloc
-) {
-    // retrieve the pointer to the list allocator
-    CxAllocator const *al = alloc->ptr1;
-
-    // use the list allocator to reallocate the memory
-    return cxRealloc(al, array, capacity * elem_size);
-}
-
 static void cx_arl_destructor(struct cx_list_s *list) {
     cx_array_list *arl = (cx_array_list *) list;
 
@@ -211,7 +629,7 @@
 static size_t cx_arl_insert_array(
         struct cx_list_s *list,
         size_t index,
-        void const *array,
+        const void *array,
         size_t n
 ) {
     // out of bounds and special case check
@@ -222,15 +640,16 @@
 
     // do we need to move some elements?
     if (index < list->collection.size) {
-        char const *first_to_move = (char const *) arl->data;
+        const char *first_to_move = (const char *) arl->data;
         first_to_move += index * list->collection.elem_size;
         size_t elems_to_move = list->collection.size - index;
         size_t start_of_moved = index + n;
 
-        if (CX_ARRAY_SUCCESS != cx_array_copy(
+        if (cx_array_copy(
                 &arl->data,
                 &list->collection.size,
                 &arl->capacity,
+                0,
                 start_of_moved,
                 first_to_move,
                 list->collection.elem_size,
@@ -247,34 +666,60 @@
     // therefore, it is impossible to leave this function with an invalid array
 
     // place the new elements
-    if (CX_ARRAY_SUCCESS == cx_array_copy(
+    if (cx_array_copy(
             &arl->data,
             &list->collection.size,
             &arl->capacity,
+            0,
             index,
             array,
             list->collection.elem_size,
             n,
             &arl->reallocator
     )) {
-        return n;
-    } else {
         // array list implementation is "all or nothing"
         return 0;
+    } else {
+        return n;
+    }
+}
+
+static size_t cx_arl_insert_sorted(
+        struct cx_list_s *list,
+        const void *sorted_data,
+        size_t n
+) {
+    // get a correctly typed pointer to the list
+    cx_array_list *arl = (cx_array_list *) list;
+
+    if (cx_array_insert_sorted(
+            &arl->data,
+            &list->collection.size,
+            &arl->capacity,
+            list->collection.cmpfunc,
+            sorted_data,
+            list->collection.elem_size,
+            n,
+            &arl->reallocator
+    )) {
+        // array list implementation is "all or nothing"
+        return 0;
+    } else {
+        return n;
     }
 }
 
 static int cx_arl_insert_element(
         struct cx_list_s *list,
         size_t index,
-        void const *element
+        const void *element
 ) {
     return 1 != cx_arl_insert_array(list, index, element, 1);
 }
 
 static int cx_arl_insert_iter(
         struct cx_iterator_s *iter,
-        void const *elem,
+        const void *elem,
         int prepend
 ) {
     struct cx_list_s *list = iter->src_handle.m;
@@ -284,57 +729,84 @@
                 iter->index + 1 - prepend,
                 elem
         );
-        if (result == 0 && prepend != 0) {
-            iter->index++;
-            iter->elem_handle = ((char *) iter->elem_handle) + list->collection.elem_size;
+        if (result == 0) {
+            iter->elem_count++;
+            if (prepend != 0) {
+                iter->index++;
+                iter->elem_handle = ((char *) iter->elem_handle) + list->collection.elem_size;
+            }
         }
         return result;
     } else {
         int result = cx_arl_insert_element(list, list->collection.size, elem);
-        iter->index = list->collection.size;
+        if (result == 0) {
+            iter->elem_count++;
+            iter->index = list->collection.size;
+        }
         return result;
     }
 }
 
-static int cx_arl_remove(
+static size_t cx_arl_remove(
         struct cx_list_s *list,
-        size_t index
+        size_t index,
+        size_t num,
+        void *targetbuf
 ) {
     cx_array_list *arl = (cx_array_list *) list;
 
     // out-of-bounds check
+    size_t remove;
     if (index >= list->collection.size) {
-        return 1;
+        remove = 0;
+    } else if (index + num > list->collection.size) {
+        remove = list->collection.size - index;
+    } else {
+        remove = num;
     }
 
-    // content destruction
-    cx_invoke_destructor(list, ((char *) arl->data) + index * list->collection.elem_size);
+    // easy exit
+    if (remove == 0) return 0;
 
-    // short-circuit removal of last element
-    if (index == list->collection.size - 1) {
-        list->collection.size--;
-        return 0;
+    // destroy or copy contents
+    if (targetbuf == NULL) {
+        for (size_t idx = index; idx < index + remove; idx++) {
+            cx_invoke_destructor(
+                    list,
+                    ((char *) arl->data) + idx * list->collection.elem_size
+            );
+        }
+    } else {
+        memcpy(
+                targetbuf,
+                ((char *) arl->data) + index * list->collection.elem_size,
+                remove * list->collection.elem_size
+        );
     }
 
-    // just move the elements starting at index to the left
-    int result = cx_array_copy(
+    // short-circuit removal of last elements
+    if (index + remove == list->collection.size) {
+        list->collection.size -= remove;
+        return remove;
+    }
+
+    // just move the elements to the left
+    cx_array_copy(
             &arl->data,
             &list->collection.size,
             &arl->capacity,
+            0,
             index,
-            ((char *) arl->data) + (index + 1) * list->collection.elem_size,
+            ((char *) arl->data) + (index + remove) * list->collection.elem_size,
             list->collection.elem_size,
-            list->collection.size - index - 1,
+            list->collection.size - index - remove,
             &arl->reallocator
     );
 
-    // cx_array_copy cannot fail, array cannot grow
-    assert(result == 0);
+    // decrease the size
+    list->collection.size -= remove;
 
-    // decrease the size
-    list->collection.size--;
-
-    return 0;
+    return remove;
 }
 
 static void cx_arl_clear(struct cx_list_s *list) {
@@ -372,11 +844,11 @@
 }
 
 static void *cx_arl_at(
-        struct cx_list_s const *list,
+        const struct cx_list_s *list,
         size_t index
 ) {
     if (index < list->collection.size) {
-        cx_array_list const *arl = (cx_array_list const *) list;
+        const cx_array_list *arl = (const cx_array_list *) list;
         char *space = arl->data;
         return space + index * list->collection.elem_size;
     } else {
@@ -386,20 +858,21 @@
 
 static ssize_t cx_arl_find_remove(
         struct cx_list_s *list,
-        void const *elem,
+        const void *elem,
         bool remove
 ) {
     assert(list->collection.cmpfunc != NULL);
     assert(list->collection.size < SIZE_MAX / 2);
-    char *cur = ((cx_array_list const *) list)->data;
+    char *cur = ((const cx_array_list *) list)->data;
 
     for (ssize_t i = 0; i < (ssize_t) list->collection.size; i++) {
         if (0 == list->collection.cmpfunc(elem, cur)) {
             if (remove) {
-                if (0 == cx_arl_remove(list, i)) {
+                if (1 == cx_arl_remove(list, i, 1, NULL)) {
                     return i;
                 } else {
-                    return -1;
+                    // should be unreachable
+                    return -1;  // LCOV_EXCL_LINE
                 }
             } else {
                 return i;
@@ -421,13 +894,13 @@
 }
 
 static int cx_arl_compare(
-        struct cx_list_s const *list,
-        struct cx_list_s const *other
+        const struct cx_list_s *list,
+        const struct cx_list_s *other
 ) {
     assert(list->collection.cmpfunc != NULL);
     if (list->collection.size == other->collection.size) {
-        char const *left = ((cx_array_list const *) list)->data;
-        char const *right = ((cx_array_list const *) other)->data;
+        const char *left = ((const cx_array_list *) list)->data;
+        const char *right = ((const cx_array_list *) other)->data;
         for (size_t i = 0; i < list->collection.size; i++) {
             int d = list->collection.cmpfunc(left, right);
             if (d != 0) {
@@ -444,21 +917,21 @@
 
 static void cx_arl_reverse(struct cx_list_s *list) {
     if (list->collection.size < 2) return;
-    void *data = ((cx_array_list const *) list)->data;
+    void *data = ((const cx_array_list *) list)->data;
     size_t half = list->collection.size / 2;
     for (size_t i = 0; i < half; i++) {
         cx_array_swap(data, list->collection.elem_size, i, list->collection.size - 1 - i);
     }
 }
 
-static bool cx_arl_iter_valid(void const *it) {
-    struct cx_iterator_s const *iter = it;
-    struct cx_list_s const *list = iter->src_handle.c;
+static bool cx_arl_iter_valid(const void *it) {
+    const struct cx_iterator_s *iter = it;
+    const struct cx_list_s *list = iter->src_handle.c;
     return iter->index < list->collection.size;
 }
 
-static void *cx_arl_iter_current(void const *it) {
-    struct cx_iterator_s const *iter = it;
+static void *cx_arl_iter_current(const void *it) {
+    const struct cx_iterator_s *iter = it;
     return iter->elem_handle;
 }
 
@@ -466,21 +939,21 @@
     struct cx_iterator_s *iter = it;
     if (iter->base.remove) {
         iter->base.remove = false;
-        cx_arl_remove(iter->src_handle.m, iter->index);
+        cx_arl_remove(iter->src_handle.m, iter->index, 1, NULL);
     } else {
         iter->index++;
         iter->elem_handle =
                 ((char *) iter->elem_handle)
-                + ((struct cx_list_s const *) iter->src_handle.c)->collection.elem_size;
+                + ((const struct cx_list_s *) iter->src_handle.c)->collection.elem_size;
     }
 }
 
 static void cx_arl_iter_prev(void *it) {
     struct cx_iterator_s *iter = it;
-    cx_array_list const* list = iter->src_handle.c;
+    const cx_array_list *list = iter->src_handle.c;
     if (iter->base.remove) {
         iter->base.remove = false;
-        cx_arl_remove(iter->src_handle.m, iter->index);
+        cx_arl_remove(iter->src_handle.m, iter->index, 1, NULL);
     }
     iter->index--;
     if (iter->index < list->base.collection.size) {
@@ -491,7 +964,7 @@
 
 
 static struct cx_iterator_s cx_arl_iterator(
-        struct cx_list_s const *list,
+        const struct cx_list_s *list,
         size_t index,
         bool backwards
 ) {
@@ -515,6 +988,7 @@
         cx_arl_destructor,
         cx_arl_insert_element,
         cx_arl_insert_array,
+        cx_arl_insert_sorted,
         cx_arl_insert_iter,
         cx_arl_remove,
         cx_arl_clear,
@@ -528,7 +1002,7 @@
 };
 
 CxList *cxArrayListCreate(
-        CxAllocator const *allocator,
+        const CxAllocator *allocator,
         cx_compare_func comparator,
         size_t elem_size,
         size_t initial_capacity
@@ -555,14 +1029,13 @@
 
     // allocate the array after the real elem_size is known
     list->data = cxCalloc(allocator, initial_capacity, elem_size);
-    if (list->data == NULL) {
+    if (list->data == NULL) { // LCOV_EXCL_START
         cxFree(allocator, list);
         return NULL;
-    }
+    } // LCOV_EXCL_STOP
 
     // configure the reallocator
-    list->reallocator.realloc = cx_arl_realloc;
-    list->reallocator.ptr1 = (void *) allocator;
+    list->reallocator = cx_array_reallocator(allocator, NULL);
 
     return (CxList *) list;
 }

mercurial