ucx/array_list.c

changeset 431
bb7da585debc
parent 324
ce13a778654a
child 440
7c4b9cba09ca
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ucx/array_list.c	Sat Jan 04 16:38:48 2025 +0100
@@ -0,0 +1,767 @@
+/*
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
+ *
+ * Copyright 2021 Mike Becker, Olaf Wintermann All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ *   1. Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *
+ *   2. Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in the
+ *      documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "cx/array_list.h"
+#include "cx/compare.h"
+#include <assert.h>
+#include <string.h>
+
+// Default array reallocator
+
+static void *cx_array_default_realloc(
+        void *array,
+        size_t capacity,
+        size_t elem_size,
+        __attribute__((__unused__)) struct cx_array_reallocator_s *alloc
+) {
+    return realloc(array, capacity * elem_size);
+}
+
+struct cx_array_reallocator_s cx_array_default_reallocator_impl = {
+        cx_array_default_realloc, NULL, NULL, 0, 0
+};
+
+struct cx_array_reallocator_s *cx_array_default_reallocator = &cx_array_default_reallocator_impl;
+
+// LOW LEVEL ARRAY LIST FUNCTIONS
+
+enum cx_array_result cx_array_copy(
+        void **target,
+        size_t *size,
+        size_t *capacity,
+        size_t index,
+        const void *src,
+        size_t elem_size,
+        size_t elem_count,
+        struct cx_array_reallocator_s *reallocator
+) {
+    // assert pointers
+    assert(target != NULL);
+    assert(size != NULL);
+    assert(src != NULL);
+
+    // determine capacity
+    size_t cap = capacity == NULL ? *size : *capacity;
+
+    // check if resize is required
+    size_t minsize = index + elem_count;
+    size_t newsize = *size < minsize ? minsize : *size;
+    bool needrealloc = newsize > cap;
+
+    // reallocate if possible
+    if (needrealloc) {
+        // a reallocator and a capacity variable must be available
+        if (reallocator == NULL || capacity == NULL) {
+            return CX_ARRAY_REALLOC_NOT_SUPPORTED;
+        }
+
+        // check, if we need to repair the src pointer
+        uintptr_t targetaddr = (uintptr_t) *target;
+        uintptr_t srcaddr = (uintptr_t) src;
+        bool repairsrc = targetaddr <= srcaddr
+                         && srcaddr < targetaddr + cap * elem_size;
+
+        // calculate new capacity (next number divisible by 16)
+        cap = newsize - (newsize % 16) + 16;
+        assert(cap > newsize);
+
+        // perform reallocation
+        void *newmem = reallocator->realloc(
+                *target, cap, elem_size, reallocator
+        );
+        if (newmem == NULL) {
+            return CX_ARRAY_REALLOC_FAILED;
+        }
+
+        // repair src pointer, if necessary
+        if (repairsrc) {
+            src = ((char *) newmem) + (srcaddr - targetaddr);
+        }
+
+        // store new pointer and capacity
+        *target = newmem;
+        *capacity = cap;
+    }
+
+    // determine target pointer
+    char *start = *target;
+    start += index * elem_size;
+
+    // copy elements and set new size
+    memmove(start, src, elem_count * elem_size);
+    *size = newsize;
+
+    // return successfully
+    return CX_ARRAY_SUCCESS;
+}
+
+enum cx_array_result cx_array_insert_sorted(
+        void **target,
+        size_t *size,
+        size_t *capacity,
+        cx_compare_func cmp_func,
+        const void *sorted_data,
+        size_t elem_size,
+        size_t elem_count,
+        struct cx_array_reallocator_s *reallocator
+) {
+    // assert pointers
+    assert(target != NULL);
+    assert(size != NULL);
+    assert(capacity != NULL);
+    assert(cmp_func != NULL);
+    assert(sorted_data != NULL);
+    assert(reallocator != NULL);
+
+    // corner case
+    if (elem_count == 0) return 0;
+
+    // store some counts
+    size_t old_size = *size;
+    size_t needed_capacity = old_size + elem_count;
+
+    // if we need more than we have, try a reallocation
+    if (needed_capacity > *capacity) {
+        size_t new_capacity = needed_capacity - (needed_capacity % 16) + 16;
+        void *new_mem = reallocator->realloc(
+                *target, new_capacity, elem_size, reallocator
+        );
+        if (new_mem == NULL) {
+            // give it up right away, there is no contract
+            // that requires us to insert as much as we can
+            return CX_ARRAY_REALLOC_FAILED;
+        }
+        *target = new_mem;
+        *capacity = new_capacity;
+    }
+
+    // now we have guaranteed that we can insert everything
+    size_t new_size = old_size + elem_count;
+    *size = new_size;
+
+    // declare the source and destination indices/pointers
+    size_t si = 0, di = 0;
+    const char *src = sorted_data;
+    char *dest = *target;
+
+    // find the first insertion point
+    di = cx_array_binary_search_sup(dest, old_size, elem_size, src, cmp_func);
+    dest += di * elem_size;
+
+    // move the remaining elements in the array completely to the right
+    // we will call it the "buffer" for parked elements
+    size_t buf_size = old_size - di;
+    size_t bi = new_size - buf_size;
+    char *bptr = ((char *) *target) + bi * elem_size;
+    memmove(bptr, dest, buf_size * elem_size);
+
+    // while there are both source and buffered elements left,
+    // copy them interleaving
+    while (si < elem_count && bi < new_size) {
+        // determine how many source elements can be inserted
+        size_t copy_len, bytes_copied;
+        copy_len = cx_array_binary_search_sup(
+                src,
+                elem_count - si,
+                elem_size,
+                bptr,
+                cmp_func
+        );
+
+        // copy the source elements
+        bytes_copied = copy_len * elem_size;
+        memcpy(dest, src, bytes_copied);
+        dest += bytes_copied;
+        src += bytes_copied;
+        si += copy_len;
+
+        // when all source elements are in place, we are done
+        if (si >= elem_count) break;
+
+        // determine how many buffered elements need to be restored
+        copy_len = cx_array_binary_search_sup(
+                bptr,
+                new_size - bi,
+                elem_size,
+                src,
+                cmp_func
+        );
+
+        // restore the buffered elements
+        bytes_copied = copy_len * elem_size;
+        memmove(dest, bptr, bytes_copied);
+        dest += bytes_copied;
+        bptr += bytes_copied;
+        bi += copy_len;
+    }
+
+    // still source elements left? simply append them
+    if (si < elem_count) {
+        memcpy(dest, src, elem_size * (elem_count - si));
+    }
+
+    // still buffer elements left?
+    // don't worry, we already moved them to the correct place
+
+    return CX_ARRAY_SUCCESS;
+}
+
+size_t cx_array_binary_search_inf(
+        const void *arr,
+        size_t size,
+        size_t elem_size,
+        const void *elem,
+        cx_compare_func cmp_func
+) {
+    // special case: empty array
+    if (size == 0) return 0;
+
+    // declare a variable that will contain the compare results
+    int result;
+
+    // cast the array pointer to something we can use offsets with
+    const char *array = arr;
+
+    // check the first array element
+    result = cmp_func(elem, array);
+    if (result < 0) {
+        return size;
+    } else if (result == 0) {
+        return 0;
+    }
+
+    // check the last array element
+    result = cmp_func(elem, array + elem_size * (size - 1));
+    if (result >= 0) {
+        return size - 1;
+    }
+
+    // the element is now guaranteed to be somewhere in the list
+    // so start the binary search
+    size_t left_index = 1;
+    size_t right_index = size - 1;
+    size_t pivot_index;
+
+    while (left_index <= right_index) {
+        pivot_index = left_index + (right_index - left_index) / 2;
+        const char *arr_elem = array + pivot_index * elem_size;
+        result = cmp_func(elem, arr_elem);
+        if (result == 0) {
+            // found it!
+            return pivot_index;
+        } else if (result < 0) {
+            // element is smaller than pivot, continue search left
+            right_index = pivot_index - 1;
+        } else {
+            // element is larger than pivot, continue search right
+            left_index = pivot_index + 1;
+        }
+    }
+
+    // report the largest upper bound
+    return result < 0 ? (pivot_index - 1) : pivot_index;
+}
+
+#ifndef CX_ARRAY_SWAP_SBO_SIZE
+#define CX_ARRAY_SWAP_SBO_SIZE 128
+#endif
+unsigned cx_array_swap_sbo_size = CX_ARRAY_SWAP_SBO_SIZE;
+
+void cx_array_swap(
+        void *arr,
+        size_t elem_size,
+        size_t idx1,
+        size_t idx2
+) {
+    assert(arr != NULL);
+
+    // short circuit
+    if (idx1 == idx2) return;
+
+    char sbo_mem[CX_ARRAY_SWAP_SBO_SIZE];
+    void *tmp;
+
+    // decide if we can use the local buffer
+    if (elem_size > CX_ARRAY_SWAP_SBO_SIZE) {
+        tmp = malloc(elem_size);
+        // we don't want to enforce error handling
+        if (tmp == NULL) abort();
+    } else {
+        tmp = sbo_mem;
+    }
+
+    // calculate memory locations
+    char *left = arr, *right = arr;
+    left += idx1 * elem_size;
+    right += idx2 * elem_size;
+
+    // three-way swap
+    memcpy(tmp, left, elem_size);
+    memcpy(left, right, elem_size);
+    memcpy(right, tmp, elem_size);
+
+    // free dynamic memory, if it was needed
+    if (tmp != sbo_mem) {
+        free(tmp);
+    }
+}
+
+// HIGH LEVEL ARRAY LIST FUNCTIONS
+
+typedef struct {
+    struct cx_list_s base;
+    void *data;
+    size_t capacity;
+    struct cx_array_reallocator_s reallocator;
+} cx_array_list;
+
+static void *cx_arl_realloc(
+        void *array,
+        size_t capacity,
+        size_t elem_size,
+        struct cx_array_reallocator_s *alloc
+) {
+    // retrieve the pointer to the list allocator
+    const CxAllocator *al = alloc->ptr1;
+
+    // use the list allocator to reallocate the memory
+    return cxRealloc(al, array, capacity * elem_size);
+}
+
+static void cx_arl_destructor(struct cx_list_s *list) {
+    cx_array_list *arl = (cx_array_list *) list;
+
+    char *ptr = arl->data;
+
+    if (list->collection.simple_destructor) {
+        for (size_t i = 0; i < list->collection.size; i++) {
+            cx_invoke_simple_destructor(list, ptr);
+            ptr += list->collection.elem_size;
+        }
+    }
+    if (list->collection.advanced_destructor) {
+        for (size_t i = 0; i < list->collection.size; i++) {
+            cx_invoke_advanced_destructor(list, ptr);
+            ptr += list->collection.elem_size;
+        }
+    }
+
+    cxFree(list->collection.allocator, arl->data);
+    cxFree(list->collection.allocator, list);
+}
+
+static size_t cx_arl_insert_array(
+        struct cx_list_s *list,
+        size_t index,
+        const void *array,
+        size_t n
+) {
+    // out of bounds and special case check
+    if (index > list->collection.size || n == 0) return 0;
+
+    // get a correctly typed pointer to the list
+    cx_array_list *arl = (cx_array_list *) list;
+
+    // do we need to move some elements?
+    if (index < list->collection.size) {
+        const char *first_to_move = (const char *) arl->data;
+        first_to_move += index * list->collection.elem_size;
+        size_t elems_to_move = list->collection.size - index;
+        size_t start_of_moved = index + n;
+
+        if (CX_ARRAY_SUCCESS != cx_array_copy(
+                &arl->data,
+                &list->collection.size,
+                &arl->capacity,
+                start_of_moved,
+                first_to_move,
+                list->collection.elem_size,
+                elems_to_move,
+                &arl->reallocator
+        )) {
+            // if moving existing elems is unsuccessful, abort
+            return 0;
+        }
+    }
+
+    // note that if we had to move the elements, the following operation
+    // is guaranteed to succeed, because we have the memory already allocated
+    // therefore, it is impossible to leave this function with an invalid array
+
+    // place the new elements
+    if (CX_ARRAY_SUCCESS == cx_array_copy(
+            &arl->data,
+            &list->collection.size,
+            &arl->capacity,
+            index,
+            array,
+            list->collection.elem_size,
+            n,
+            &arl->reallocator
+    )) {
+        return n;
+    } else {
+        // array list implementation is "all or nothing"
+        return 0;
+    }
+}
+
+static size_t cx_arl_insert_sorted(
+        struct cx_list_s *list,
+        const void *sorted_data,
+        size_t n
+) {
+    // get a correctly typed pointer to the list
+    cx_array_list *arl = (cx_array_list *) list;
+
+    if (CX_ARRAY_SUCCESS == cx_array_insert_sorted(
+            &arl->data,
+            &list->collection.size,
+            &arl->capacity,
+            list->collection.cmpfunc,
+            sorted_data,
+            list->collection.elem_size,
+            n,
+            &arl->reallocator
+    )) {
+        return n;
+    } else {
+        // array list implementation is "all or nothing"
+        return 0;
+    }
+}
+
+static int cx_arl_insert_element(
+        struct cx_list_s *list,
+        size_t index,
+        const void *element
+) {
+    return 1 != cx_arl_insert_array(list, index, element, 1);
+}
+
+static int cx_arl_insert_iter(
+        struct cx_iterator_s *iter,
+        const void *elem,
+        int prepend
+) {
+    struct cx_list_s *list = iter->src_handle.m;
+    if (iter->index < list->collection.size) {
+        int result = cx_arl_insert_element(
+                list,
+                iter->index + 1 - prepend,
+                elem
+        );
+        if (result == 0) {
+            iter->elem_count++;
+            if (prepend != 0) {
+                iter->index++;
+                iter->elem_handle = ((char *) iter->elem_handle) + list->collection.elem_size;
+            }
+        }
+        return result;
+    } else {
+        int result = cx_arl_insert_element(list, list->collection.size, elem);
+        if (result == 0) {
+            iter->elem_count++;
+            iter->index = list->collection.size;
+        }
+        return result;
+    }
+}
+
+static int cx_arl_remove(
+        struct cx_list_s *list,
+        size_t index
+) {
+    cx_array_list *arl = (cx_array_list *) list;
+
+    // out-of-bounds check
+    if (index >= list->collection.size) {
+        return 1;
+    }
+
+    // content destruction
+    cx_invoke_destructor(list, ((char *) arl->data) + index * list->collection.elem_size);
+
+    // short-circuit removal of last element
+    if (index == list->collection.size - 1) {
+        list->collection.size--;
+        return 0;
+    }
+
+    // just move the elements starting at index to the left
+    int result = cx_array_copy(
+            &arl->data,
+            &list->collection.size,
+            &arl->capacity,
+            index,
+            ((char *) arl->data) + (index + 1) * list->collection.elem_size,
+            list->collection.elem_size,
+            list->collection.size - index - 1,
+            &arl->reallocator
+    );
+
+    // cx_array_copy cannot fail, array cannot grow
+    assert(result == 0);
+
+    // decrease the size
+    list->collection.size--;
+
+    return 0;
+}
+
+static void cx_arl_clear(struct cx_list_s *list) {
+    if (list->collection.size == 0) return;
+
+    cx_array_list *arl = (cx_array_list *) list;
+    char *ptr = arl->data;
+
+    if (list->collection.simple_destructor) {
+        for (size_t i = 0; i < list->collection.size; i++) {
+            cx_invoke_simple_destructor(list, ptr);
+            ptr += list->collection.elem_size;
+        }
+    }
+    if (list->collection.advanced_destructor) {
+        for (size_t i = 0; i < list->collection.size; i++) {
+            cx_invoke_advanced_destructor(list, ptr);
+            ptr += list->collection.elem_size;
+        }
+    }
+
+    memset(arl->data, 0, list->collection.size * list->collection.elem_size);
+    list->collection.size = 0;
+}
+
+static int cx_arl_swap(
+        struct cx_list_s *list,
+        size_t i,
+        size_t j
+) {
+    if (i >= list->collection.size || j >= list->collection.size) return 1;
+    cx_array_list *arl = (cx_array_list *) list;
+    cx_array_swap(arl->data, list->collection.elem_size, i, j);
+    return 0;
+}
+
+static void *cx_arl_at(
+        const struct cx_list_s *list,
+        size_t index
+) {
+    if (index < list->collection.size) {
+        const cx_array_list *arl = (const cx_array_list *) list;
+        char *space = arl->data;
+        return space + index * list->collection.elem_size;
+    } else {
+        return NULL;
+    }
+}
+
+static ssize_t cx_arl_find_remove(
+        struct cx_list_s *list,
+        const void *elem,
+        bool remove
+) {
+    assert(list->collection.cmpfunc != NULL);
+    assert(list->collection.size < SIZE_MAX / 2);
+    char *cur = ((const cx_array_list *) list)->data;
+
+    for (ssize_t i = 0; i < (ssize_t) list->collection.size; i++) {
+        if (0 == list->collection.cmpfunc(elem, cur)) {
+            if (remove) {
+                if (0 == cx_arl_remove(list, i)) {
+                    return i;
+                } else {
+                    return -1;
+                }
+            } else {
+                return i;
+            }
+        }
+        cur += list->collection.elem_size;
+    }
+
+    return -1;
+}
+
+static void cx_arl_sort(struct cx_list_s *list) {
+    assert(list->collection.cmpfunc != NULL);
+    qsort(((cx_array_list *) list)->data,
+          list->collection.size,
+          list->collection.elem_size,
+          list->collection.cmpfunc
+    );
+}
+
+static int cx_arl_compare(
+        const struct cx_list_s *list,
+        const struct cx_list_s *other
+) {
+    assert(list->collection.cmpfunc != NULL);
+    if (list->collection.size == other->collection.size) {
+        const char *left = ((const cx_array_list *) list)->data;
+        const char *right = ((const cx_array_list *) other)->data;
+        for (size_t i = 0; i < list->collection.size; i++) {
+            int d = list->collection.cmpfunc(left, right);
+            if (d != 0) {
+                return d;
+            }
+            left += list->collection.elem_size;
+            right += other->collection.elem_size;
+        }
+        return 0;
+    } else {
+        return list->collection.size < other->collection.size ? -1 : 1;
+    }
+}
+
+static void cx_arl_reverse(struct cx_list_s *list) {
+    if (list->collection.size < 2) return;
+    void *data = ((const cx_array_list *) list)->data;
+    size_t half = list->collection.size / 2;
+    for (size_t i = 0; i < half; i++) {
+        cx_array_swap(data, list->collection.elem_size, i, list->collection.size - 1 - i);
+    }
+}
+
+static bool cx_arl_iter_valid(const void *it) {
+    const struct cx_iterator_s *iter = it;
+    const struct cx_list_s *list = iter->src_handle.c;
+    return iter->index < list->collection.size;
+}
+
+static void *cx_arl_iter_current(const void *it) {
+    const struct cx_iterator_s *iter = it;
+    return iter->elem_handle;
+}
+
+static void cx_arl_iter_next(void *it) {
+    struct cx_iterator_s *iter = it;
+    if (iter->base.remove) {
+        iter->base.remove = false;
+        cx_arl_remove(iter->src_handle.m, iter->index);
+    } else {
+        iter->index++;
+        iter->elem_handle =
+                ((char *) iter->elem_handle)
+                + ((const struct cx_list_s *) iter->src_handle.c)->collection.elem_size;
+    }
+}
+
+static void cx_arl_iter_prev(void *it) {
+    struct cx_iterator_s *iter = it;
+    const cx_array_list *list = iter->src_handle.c;
+    if (iter->base.remove) {
+        iter->base.remove = false;
+        cx_arl_remove(iter->src_handle.m, iter->index);
+    }
+    iter->index--;
+    if (iter->index < list->base.collection.size) {
+        iter->elem_handle = ((char *) list->data)
+                            + iter->index * list->base.collection.elem_size;
+    }
+}
+
+
+static struct cx_iterator_s cx_arl_iterator(
+        const struct cx_list_s *list,
+        size_t index,
+        bool backwards
+) {
+    struct cx_iterator_s iter;
+
+    iter.index = index;
+    iter.src_handle.c = list;
+    iter.elem_handle = cx_arl_at(list, index);
+    iter.elem_size = list->collection.elem_size;
+    iter.elem_count = list->collection.size;
+    iter.base.valid = cx_arl_iter_valid;
+    iter.base.current = cx_arl_iter_current;
+    iter.base.next = backwards ? cx_arl_iter_prev : cx_arl_iter_next;
+    iter.base.remove = false;
+    iter.base.mutating = false;
+
+    return iter;
+}
+
+static cx_list_class cx_array_list_class = {
+        cx_arl_destructor,
+        cx_arl_insert_element,
+        cx_arl_insert_array,
+        cx_arl_insert_sorted,
+        cx_arl_insert_iter,
+        cx_arl_remove,
+        cx_arl_clear,
+        cx_arl_swap,
+        cx_arl_at,
+        cx_arl_find_remove,
+        cx_arl_sort,
+        cx_arl_compare,
+        cx_arl_reverse,
+        cx_arl_iterator,
+};
+
+CxList *cxArrayListCreate(
+        const CxAllocator *allocator,
+        cx_compare_func comparator,
+        size_t elem_size,
+        size_t initial_capacity
+) {
+    if (allocator == NULL) {
+        allocator = cxDefaultAllocator;
+    }
+
+    cx_array_list *list = cxCalloc(allocator, 1, sizeof(cx_array_list));
+    if (list == NULL) return NULL;
+
+    list->base.cl = &cx_array_list_class;
+    list->base.collection.allocator = allocator;
+    list->capacity = initial_capacity;
+
+    if (elem_size > 0) {
+        list->base.collection.elem_size = elem_size;
+        list->base.collection.cmpfunc = comparator;
+    } else {
+        elem_size = sizeof(void *);
+        list->base.collection.cmpfunc = comparator == NULL ? cx_cmp_ptr : comparator;
+        cxListStorePointers((CxList *) list);
+    }
+
+    // allocate the array after the real elem_size is known
+    list->data = cxCalloc(allocator, initial_capacity, elem_size);
+    if (list->data == NULL) {
+        cxFree(allocator, list);
+        return NULL;
+    }
+
+    // configure the reallocator
+    list->reallocator.realloc = cx_arl_realloc;
+    list->reallocator.ptr1 = (void *) allocator;
+
+    return (CxList *) list;
+}

mercurial